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Intro

» QCD in the chiral limit: xS is spontaneously broken. When a small mass is given
to the fermions, the Gell-Mann-Oaks-Renner showed that

my ~ F2Mbg

» Consider a theory in the conformal window, and give a small mass to fermions.
How is the GMOR relation modified in this case?

» A generalized version of the GMOR can be obtained using RG-analysis and the
PCAC (Partially Conserved Axial Current) relations.
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Partially Conserved Axial Current
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> On shell OpAp(y) = 2mP(x)

Kallén-Lehmann spectral representation for the PS correlator:
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Partially Conserved Axial Current
> Ay = wysyud P = uvysd

> On shell OpAp(y) = 2mP(x)

Kallén-Lehmann spectral representation for the PS correlator:
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The GMOR relation follows from the integrated PCAC relation.



Partially Conserved Axial Current
> Ay = wysyud P = uvysd

> On shell OpAp(y) = 2mP(x)

Kallén-Lehmann spectral representation for the PS correlator:
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> Off shell PT(x)0,A,(y) — 2mPT (x)P(y) = (au + dd)(x)5*(x — y)

m / (Pt (0)P(0))d*x = —(au) = = DIVERGENT!

The GMOR relation follows from the integrated PCAC relation.



Analysis of divergences
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> PS susceptibility. At small x: (PT(x)P(0)) ~ |x|~°
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At large w: p(w,m) ~ w3

One can easily regularize the chiral condensate by introducing a cutoff in the integral.
Is it possible to regularize the PS susceptibility in such a way that the identity still
holds?



Master equation

| want to find a regularized version of the following relation:
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and separate the leading IR behaviour from the UV divergences.
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| want to find a regularized version of the following relation:
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and separate the leading IR behaviour from the UV divergences.
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Integrate out fermions
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Cut the eigenvalues of the Dirac operator (only in observables)
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Master equation

| want to find a regularized version of the following relation:

m / (PT(x)P(0))d*x ==

and separate the leading IR behaviour from the UV divergences.
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Split the integrals
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Move all the UV divergences to the rhs
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Master equation
| want to find a regularized version of the following relation:
m / (PT(x)P(0))d*x =%
and separate the leading IR behaviour from the UV divergences.
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Which pieces are divergent in the chiral limit?
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BLUE: Subleading divergence

RED: Leading divergence (~ m~")
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IR-conformality 1 < v, < 2

Which pieces are divergent in the chiral limit?
GREEN: Finite
BLUE: Possible subleading divergence
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IR-conformality 0 < ~, < 1

The PS susceptibility is IR finite!!! One can take derivatives with rispect to the mass.
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IR-conformality 0 < ~, < 1

The PS susceptibility is IR finite!!! One can take derivatives with rispect to the mass.

Which pieces are divergent in the chiral limit?
GREEN: Finite

BLUE: Possible subleading divergence

RED: Leading divergence (~ mﬁf%)

/ dt /d C 0 2R (m )
X xX,m) — — —————> =
r)n12 T rs( Oom? 2m

) 2 ‘Woo plw, mJ
= lim - / /,w lw / dt/dgx CP.S X, M, Woo )
weo—o0 [ Om? J m? + w2 T om?

m? SR (m, @)
lim e
m—0 F2 M3, m sub

=1+l / [Rps(s,m)] e

im ———— ps(s,m e —
2 b

m OF%SMPS Sps s N



Summary
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Lattice implementation with Wilson fermions

How to measure X (@) on the lattice? If Dy is the Dirac-Wilson operator...
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Lattice implementation with Wilson fermions

How to measure X (@) on the lattice? If Dy is the Dirac-Wilson operator...
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How do you keep the renormalised cutoff w fixed while taking the continuum limit? One
can use a RG-invariant quantity, like the mode number:
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Lattice implementation with Wilson fermions

Recipe:

1.

Choose the physical values for the Sommer radius ry, the PS mass Mpg and the
mode number (.

Choose a value for g, measure the lattice version of the Sommer radius 7y, and
define the lattice spacing a = ry/#y.

. Measure the lattice version of the PS mass for several bare masses, and tune

the bare mass in order to get Mps = aMps.

Measure the lattice version of the mode number for several bare cutoffs, and
tune the bare cutoff in order to get ¢ = a*¢.

Measure (3, i, @).
Restart from point 2 with a smaller g.
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