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Quantum numbers of the techniquarks

In the SU(2) technicolor model,

e U is a technicolor doublet (fundamental representation).
e D is a technicolor doublet (fundamental representation).

e U and D do not carry QCD color.

e UU; and D; form a weak doublet.
e Ui and Dp are weak singlets.

e U has electric charge +1/2.
e D has electric charge —1/2.

This model has an extra Goldstone boson,
which is a natural candidate for light asymmetric dark matter.

Extensions of this simple model would be straightforward to implement.



Chiral symmetry breaking in QCD
SU(Q)LXSU(Q)R — SU(Q)\/

e Neglecting u and d quark masses, the Lagrangian has global SU(2), xSU(2)r:
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e \With degenerate u and d quark masses, the Lagrangian has global SU(2)y:
0L = —quQL + h.c.

DYNAMICAL SYMMETRY BREAKING:

e Even without u and d quark masses, the hadron spectrum is SU(2)y multiplets,
not SU(2)L xSU(2)g multiplets.

For example, ma+~myo # m_+ =~ my.



Chiral symmetry breaking in SU(2) technicolor

SU(4) — Sp(4)
Appelquist, Rodriques da Silva & Sannino, PRD60, 116007 (1999)
Ryttov & Sannino, PRD78, 115010 (2008)

e Neglecting U and D quark masses, the Lagrangian has global SU(4):
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e With degenerate U and D quark masses, the Lagrangian has global Sp(4):
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HYPOTHESIS (dynamical symmetry breaking):

e Even without U and D quark masses, the hadron spectrum is Sp(4) multiplets,
not SU(4) multiplets.



Seeing the SU(4) and Sp(4) symmetries

Act on the Lagrangian with an infinitesimal SU(4) transformation defined by
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e The kinetic terms are invariant because the fundamental representation is real.
This is true for Ntc = 2 but not for Npc > 2.

e The mass terms are not invariant under SU(4):
L L+—" Y a"Q"(—ic’C) (ET” + T"TE) Q +h.e.

Only 10 of the 15 generators leave £ invariant: those that obey ET" +T"'E = 0.

These 10 generators define an Sp(4) Lie algebra. 0 0 )
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Anticipating dynamical symmetry breaking

In QCD, the nonzero vacuum expectation value is  (uu) = (dd) # 0.
This has the same form as the (degenerate) explicit mass terms.
Therefore dynamical breaking has the same structure as explicit breaking:

SU(Q)LXSU(Q)R — SU(Z)V
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The 3 broken generators require 3 Goldstone bosons: «

In the SU(2) technicolor model, we expect (UU) = (DD) # 0.
This has the same form as the (degenerate) explicit mass terms.
Therefore dynamical breaking would have the same structure as explicit breaking:

SU@4) — Sp(4)

The 5 broken generators would require 5 Goldstone bosons.

We see these 5 Goldstone bosons in our lattice simulations.



Technihadron operators

local operators for technimesons:

0% (z) = U(x)TD(x)
O%) () = D(x)[U(x)
(r) _ (= -
Opfisp(®) = —2(U<£C>FU<SIZ> + D(:U)FD(:U))

local operators for technibaryons (techni-diquarks):

o) (z) = U”(2)(—ic?C)TD(x)
Opi(x) = DT(x)(—ic*C)IU (x)
ol (z) = UT(z)(—ic?C)TU ()
oM (z) = DT(z)(—ic*C)I'D(x)

Note: ' =1 or v° or ¥* or ... is any Dirac structure.



Technihadron correlation functions

Put a creation operator at time ¢, and an annihilation operator at time ¢,,.

Technimeson example:
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In this way, each technibaryon is mass-degenerate with a technimeson.



Parity partners and Goldstone bosons

The degenerate pairs have equal angular momentum but opposite parities:
r r
(o)) = 7(oF)
T r
p(of}) = (o)

Because of this, we expect the 5 Goldstone bosons to be
e the pseudoscalars IIT and 1~
e their degenerate scalars IIyp and Il
e the neutral pseudoscalar TI° (which has no technibaryon partner)

The 3 pseudoscalars will be eaten by W and Z.
The 2 scalars are our dark matter candidate and its antiparticle.



Choices for our lattice explorations

The Wilson action is used for technicolor:
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Two choices for 5 gives two lattice spacings.

Six choices of my give six techniquark masses per 3.

5 my
2.0 -0.85, -0.90, -0.94, -0.945, -0.947, -0.949
2.2 -0.60, -0.65, -0.68, -0.70, -0.72, -0.75

All lattices are 16%x32.

Electroweak interactions are omitted from the simulations.



Creating ensembles of gauge fields

Raw data for § = 2.2.
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configuration number from an ordered start

We define each ensemble = {cfg320, cfg340, cfg360, ...cfgl000}.

Techniquark propagators are random U(1) wall sources, averaged over each time step.



Determining a techniquark mass

For lattice, a convenient definition of quark mass comes from PCAC:

<<A4<t +1)P(0)) — (Au(t — 1)P(0)>>
4(P(t)P(0)) |

m, = lim
t—00

Here is the example of 8 = 2.2 and my = —0.75:
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The PCAC mass is linear in the bare mass
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Observing the Goldstone bosons
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x m, for small m,, is observed.

These plots apply to all five Goldstone bosons.
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Note: These are 3-state fits to all time steps (except the source).




Exploring the spectrum of technihadron masses
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Extrapolation to m, = 0 gives nonzero masses to non-Goldstones.
For B = 2.2, all masses extrapolate to below the lattice cutoff, m ~ 1.



Isoscalar pseudoscalar meson

i il
o O O

a2

=
o

- -
- -
* o o P
b T E g

=
o

BBl R R

I I I I | I I I I | I I I I | I I I I I I I I I I I I | I
. (@) connected part: <i> i
L 2 L 2
L 2 L 2
@ R 2

=
o

10 15

5 20
[ [ [ | [ [ [ [ | [ [ [ [ | [ [ [ [ | [ [ [ [ | [ [ [ [ | [
(b) disconnected part: © © i

el e
o O O O

=
o

o I — O
* -

L NN Ny ) IIII
23220552 A NN

> 10 15 20 25 30
(© totlal isoscalarlcorrelator ! | | | i

=
o

B
o O

H
| 1 | o| | | 1 ' | 1 | 1 1 | i | | 1
[o¢] ~ [e2] [é)] Eo) w (o] ~ [e2] (6] B w (o] ~ D (4] B w

b g

& &
E

ol
o O

BBl R AL B
= .
¢ .
¢
¢

||||Ii$||||||||||||||||¥—fi|||||
5 10 25

15 20 30
Euclidean time

=
o
o

(a) shows our signal for the isovector Goldstone boson.
(c) shows no signal for any isoscalar Goldstone boson.



Goldstone decay constant (up to renormalization)
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An effective theory for the five Goldstones
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Since = (O(10), we can integrate out all but the five Goldstones.

The effective Lagrangian couple according to
§Lg = 25: (QT(—Z'JQC)75T”Q> 1"
n—=1
[ 0 Vallyp 10 AT
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Similar to Ryttov&Sannino,PRD78(2008)115010, the resulting effective Lagrangian is
1

L = §Tr [DMQD’“LQT] + -+ (linear form)
L = fATr [wiw”‘} + -+ (nonlinear form)
where w™ contains an exponential of the Goldstone fields as well as a covariant derivative.



Summary

SU(2) technicolor with two techniquarks contains an extra Goldstone boson,
which is a natural candidate for light asymmetric dark matter.

Our lattice exploration
e confirmed the symmetry-breaking pattern: SU(4)—Sp(4).
e explored the mass spectrum of the lightest technihadrons.
e established an effective field theory.
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