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IRFP for BSM phenomenology

• IR fixed point: scale invariance at large distances

• identify the boundaries of the conformal window

• theories inside the conformal window to build 
models of conformal technicolor

• theories “just outside” the conformal window to 
build “walking TC”

• scheme/scale  dependence

• lattice artefacts
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Lattice tools

• Scaling of the spectrum in a mass deformed CGT  

• Define NP schemes to study the running of the couplings

• Schrodinger functional

• MCRG

• Potential schemes

• Identify the fixed points, compute the anomalous dimensions

• Control the systematic errors!
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Conformal spectrum

• Different qualitative behaviours in the chiral limit
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Conformal scaling

• Existence of an IRFP dictates the scaling of physical observables

• Running mass:

• RGI mass: 
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g → 0 : β(g) � −β0g
3

γ(g) � γ0g
2

g → g∗ : β(g) � β∗(g − g∗)

γ(g) � γ∗

m(µ) = Z(µ, µ0)m(µ0)

Z(µ, µ0) =
Z̃(µ/Λ)

Z̃(µ0/Λ)
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which yields:

m(µ) = m(µ0) exp

{

−
∫ g(µ)

g(µ0)

γ(z)

β(z)
dz

}

≡ Zm(µ, µ0,Λ)m(µ0) . (2)

As we are going to show, the function Zm(µ, µ0,Λ) can be rewritten in a more convenient form. The theory we are
interested in is asymptotically free in the UV. The β and γ functions close to the UV fixed point are:

g → 0 : β(g) $ −β0g
3 , (3)

γ(g) $ γ0g
2 , (4)

where the lowest order coefficients come from a one-loop computation (TR and C2(R) are the generator normalization
and the Casimir of the fermionic representation):

β0 =
1

(4π)2

(

11

3
N −

4

3
TRnF

)

, (5)

γ0 =
6C2(R)

(4π)2
. (6)

¿From now on, we will be interested only in the IR-conformal scenario. Close to the IR fixed point we assume a
regular behavior for the RG functions:

g → g∗ : β(g) $ β∗(g − g∗) , (7)

γ(g) $ γ∗ , (8)

where β∗ and γ∗, which are scheme-independent quantities, are in general not accessible by a perturbative expansion.
Integrating the RG equation µdg/dµ = β(g) close to the fixed points, the asymptotic running-coupling behavior is

derived:

µ → ∞ : g(µ) $
1

2β0 log(µ/Λ)
, (9)

µ → 0 : g(µ) $ g∗ −Ag

(µ

Λ

)β∗

. (10)

We separate now the singular behaviors close to the fixed points in the multiplicative renormalization function of
the mass:

Zm(µ, µ0,Λ) = exp

{

−
∫ g(µ)

g(µ0)

(

γ(z)

β(z)
−

γ∗
β∗(z − g∗)

+
γ0
β0z

)

dz

}

×

× exp

{

−
∫ g(µ)

g(µ0)

γ∗
β∗(z − g∗)

dz

}

exp

{

∫ g(µ)

g(µ0)

γ0
β0z

dz

}

=

=
Z̃m(µ/Λ)

Z̃m(µ0/Λ)
, (11)

where the function

Z̃m(µ/Λ) = [g∗ − g(µ)]−
γ∗
β∗ g(µ)

γ0
β0 exp

{

∫ g∗

g(µ)

(

γ(z)

β(z)
−

γ∗
β∗(z − g∗)

+
γ0
β0z

)

dz

}

(12)

is defined in such a way that the integral in the exponential is finite both for µ → 0 and µ → ∞.
An RG-invariant fermionic mass M can be defined by means of the condition m(M) = M . Plugging Eq. (11) in

Eq. (2), and choosing µ0 = M we get the relationship:

Z̃m(µ/Λ)−1m(µ) = Z̃m(M/Λ)−1M . (13)

If the RG-invariant mass M is much larger than Λ, the following asymptotic behavior can be easily shown to hold
by using the previous relationship:

m(µ) = A∞Z̃m(µ/Λ)M

[

log
M

Λ

]

γ0
β0

. (14)

m(M) = M
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Large mass limit

• theory is defined by the values of 

• fermions decouple - pure gauge theory at low energies
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At fixed energy scale µ, the running mass diverges as M goes to infinity. The fermions decouple and the theory is
effectively described by a pure Yang-Mills with a scale ΛYM ! Λ. At leading order in Λ/M , the parameterM coincides
with the quark pole mass. In fact, if S(p) is the quark propagator in a fixed gauge, the perturbative expansion yields:

S(p)−1 =

[

1 +
∞
∑

n=1

An

(

−p2

µ2
,
m(µ)

µ

)

g2n(µ)

] [

# p−m(µ)−
∞
∑

n=1

Bn

(

−p2

µ2
,
m(µ)

µ

)

g2n(µ)

]

, (15)

the pole mass m̄ is defined in such a way that the quark propagator has a pole for −p2 = m̄2. The pole mass is RG
invariant, therefore it can be computed for an arbitrary value of µ. It is convenient to choose µ = M :

m̄ = M +
∞
∑

n=1

Bn

(

m̄2

M2
, 1

)

g2n(M) . (16)

At large masses M $ Λ, the terms in the sum are suppressed since the running coupling goes to zero, and m̄ ! M .
In this regime, the meson masses are just twice the quark pole mass, while the glueball masses are the same as in the
pure Yang-Mills theory:

Mmes = 2M ; (17)

Mglue = BglueΛ . (18)

On the other hand, the chiral limit is reached for values of M much smaller than Λ. In this case, Eq. (13) becomes:

m(µ) = A0Z̃(µ/Λ)Λ−γ∗M1+γ∗ , (19)

producing the power law that is characteristic of the IR fixed point deformed with a small fermionic mass.
Consider now a physical mass MX in a channel X (it can be the mass of a particle or other physical quantities like

the square root of the string tension). As every observable, this will be a function of the renormalized coupling g(µ),
the mass m(µ), and the subtraction scale µ. However a physical quantity must be RG invariant:

MX [µ, g(µ),m(µ)] = MX (20)

for every value of µ. The RG equation for MX has a simple solution in terms of the RG-invariant quantities Λ and
M :

MX = M FX(M/Λ) , (21)

where FX is a generic function of the ratio M/Λ. In particular, if FX(x) = α/x, we get MX = αΛ which is an
RG-invariant quantity, but does not vanish in the chiral limit.
The hyperscaling hypothesis, which is assumed in the standard discussion of second-order phase transitions (see e.g.

Ref. [64]), asserts the regularity of masses (or correlation lengths in the language of statistical mechanics) with respect
to the irrelevant couplings. Consider Eq. (20) for µ = M % Λ:

MX !MX [M, g∗ −Ag(M/Λ)β∗ ,M ] =

=MX [1, g∗ −Ag(M/Λ)β∗ , 1] M !
!MX [1, g∗, 1] M ≡ AXM , (22)

where we used dimensional analysis for the second line, and regularity with respect to g in the last one. Under the
hyperscaling hypothesis, RG-invariant IR quantities depend only on M (and not on Λ) close enough to the chiral
limit. The hyperscaling hypothesis constraints the FX function defined in Eq. (21) to be regular in the chiral limit:

lim
x→0

FX(x) = AX . (23)

Since a mass gap is expected to be generated at nonzero values of M , AX must be different from zero.
Combining Eqs. (22) and (19) we get the power law for physical masses close to the chiral limit:

MX = AXM = AX [A0Z̃(µ/Λ)]−
1

1+γ∗ Λ
γ∗

1+γ∗ m(µ)
1

1+γ∗ . (24)

We remind that this expression is valid for every value of µ as long as M % Λ. In particular, the independence of
MX of Λ is manifest at values µ % Λ:

MX = AXµ
γ∗

1+γ∗ m(µ)
1

1+γ∗ . (25)

If we interpret the RG in the Wilsonian sense and choose µ = a−1 to be the cutoff, Eq. (24) yields the power law

dependence of physical masses on the bare quark mass aMX ∝ (am0)
1

1+γ∗ .
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for M � Λ

m(µ) = A∞Z̃(µ/Λ) M

�
log

M

Λ

�γ0/β0

M & Λ
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Chiral limit

• conformal symmetry: no spontaneous symmetry breaking of chiral symmetry

• for a physical quantity: 

• Scaling with the quark mass: 

7

for M � Λ

m(µ) = A0Z̃(µ/Λ) Λ−γ∗ M1+γ∗

MX = F (µ, g(µ),m(µ))

for µ = M � Λ

MX = F
�
M, g∗ −Ag(M/Λ)β∗ ,M

�

= M F̃
�
1, g∗ −Ag(M/Λ)β∗ , 1

�

� M F̃ (1, g∗, 1)

MX ∼ m1/(1+γ∗)

Hyperscaling hypothesis

Friday, 14 October 2011



Low-energy effective theories	

• early scaling:

8

7

The behavior of the masses in between the large-mass and scaling regions and the actual value of x̄ depend on the
details of the dynamics. However if the dynamics is such that the locking occurs at a value x̄ = Mlock/Λ ! 1, then
both Mσ and MPS at the locking scale are still approximately the same as in the large-mass region:

Bσ "
Mσ(M = Mlock)

Λ
"

AσMlock

Λ
= Aσx̄ , (30)

APS " 2 , (31)

and the ratio MPS/Mσ is locked at a very large value:

APS

Aσ
"

2x̄

Bσ
! 1 . (32)

Mesons are much heavier than the square root of the string tension for every value of M . Choosing an intermediate
energy scale E such that Mσ # E # MPS, the effective theory describing the gluonic degrees of freedom at energies
below E is a pure Yang-Mills plus power-suppressed corrections coming from the propagation of heavy quarks in the
loops. In order to write the effective Lagrangian in this regime, we need all the gauge-invariant scalar operators of
dimension 6 that are invariant under parity, and charge conjugation. These can be written as linear combinations of
the following independent operators (a similar analysis on the lattice was carried on in Ref. [65]):

S1 =
∑

µ,ν,ρ

tr (JµνρJ
µνρ) , (33)

S2 =
∑

µ,ν,ρ

tr
(

Jµ
µρJ

νρ
ν

)

, (34)

S3 =
∑

µ,ν,ρ

tr (JµνρJ
νµρ) , (35)

where Jµνρ = ∂µFνρ − i[Aµ, Fνρ]. Thus the effective Lagrangian can be written as:

Leff = −
1

2g2
tr (FµνF

µν) +
∑

i=1,2,3

ai
M2

Si +O(M−4) . (36)

The scale ΛYM of this low-energy pure Yang-Mills is in general a function of Λ and M and can be computed by
matching the square root of the string tension of the low-energy effective theory with the same quantity computed in
the dynamical theory:

BσΛYM

[

1 +O

(

ΛYM

M

)2
]

= Mσ = MFσ(M/Λ) , (37)

which implies that trivially ΛYM " Λ for M ! Λ, while for M < Mlock then

ΛYM "
Mσ

Bσ
"

AσM

Bσ
"

M

x̄
. (38)

In the scaling region the scale ΛYM of the low-energy pure Yang-Mills slides with the RG-invariant fermionic mass
M .
A comment is mandatory at this point. At fixed value of the fermionic mass, the low-lying spectrum of a mass-

deformed IR-conformal theory with x̄ ! 1 can not be distinguished by the low-lying spectrum of a confining theory
with heavy quarks, since they both are described by the same effective Lagrangian (36). However in a genuine heavy-
quark phase the low-energy spectrum is almost independent of the mass M , while the sliding of the low-energy scale
described in Eq. (38) and (equivalently) the locking of the gluonic spectrum to the mass M is ultimately a very clean
signature of IR-conformality.
Summarizing:

• We define the locking mass Mlock as the mass below which both the lowest isovector meson and the string
tension are approximately in the chiral scaling region.

• The value of x̄ = Mlock/Λ is determined by the detailed dynamics of the theory. If x̄ ! 1 then the mesons
are always much heavier than the square root of the string tension. The low-energy effective theory is a pure
Yang-Mills plus small corrections, with a scale ΛYM which depends on both Λ and M . For M > Mlock ! Λ
then the fermions completely decouple and ΛYM " Λ, while for M < Mlock the only effect of the fermions in
the dynamical theory is to make the low-energy scale slide with the fermionic mass ΛYM " M/x̄.
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FIG. 1: Sketches of the spectrum of a mass-deformed IR-conformal theory (square root of the string tension, 0++ and 2++

glueballs, pseudoscalar and vector isovector mesons). In the left plot, the locking sets up at an intermediate value of the fermion
mass, where dynamical fermion effects account for the physics of the system, but the pseudoscalar is not much lighter than the
other particles in the spectrum. In the right plot, the locking sets up at a high value of the fermion mass, where the heavy quark
effective theory provides a good description of the relevant degrees of freedoms. This case is realized close to the Banks-Zacks
point, but is possible in principle also if a strongly coupled IR fixed point is present.

B. Scaling region and locking scale

Under the hyperscaling hypothesis, the function FX defined in Eq. (21) is expected to approach a nonzero value
AX in the chiral limit. We can define the scaling region for a given channel X as the range of x = M/Λ around x = 0,
where the function FX(x) deviates from its asymptotic behavior by a small relative amount ε:

∣

∣

∣

∣

FX(x) −AX

AX

∣

∣

∣

∣

< ε . (26)

In the scaling region, the mass MX obeys the power law (24) as a function of the running mass up to corrections
of order ε. The extension of the scaling region will depend on the size of the discarded subleading contributions to
formula (24) in the chosen channel.
Consider now the square root of the fundamental string tension Mσ =

√
σ (which is well defined for dynamical

fermions in the adjoint representation) and the lightest isovector meson (which is always the pseudoscalar one), with
mass MPS. A finite value x = x̄ exists, below which both these channels are in the scaling region. This means that
below the mass Mlock = x̄Λ, the corrections to the hyperscaling behavior of Mσ and MPS masses are relatively smaller
than ε. Also the ratio MPS/Mσ for every fermionic mass below Mlock will be very similar to its asymptotic value
APS/Aσ:

∣

∣

∣

∣

MPS

Mσ
−

APS

Aσ

∣

∣

∣

∣

< O(ε) . (27)

The dynamics is dramatically different below and above the mass Mlock. In the large-mass region, M # Λ, the
gluonic and mesonic masses are parametrically independent. All the gluonic masses are proportional to Λ, while all
the mesonic masses are equal to 2M :

MPS = 2M , (28)

Mσ = BσΛ . (29)

The ratio MPS/Mσ goes to infinity in the large-mass limit. For masses below Mlock the two masses MPS and Mσ

enter the scaling region, become both independent of Λ and proportional to M . The ratio MPS/Mσ is locked to its
asymptotic value APS/Aσ. We will refer to Mlock as the locking mass.

MPS � Mσ
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Low-energy effective theories

• late scaling:
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FIG. 1: Sketches of the spectrum of a mass-deformed IR-conformal theory (square root of the string tension, 0++ and 2++

glueballs, pseudoscalar and vector isovector mesons). In the left plot, the locking sets up at an intermediate value of the fermion
mass, where dynamical fermion effects account for the physics of the system, but the pseudoscalar is not much lighter than the
other particles in the spectrum. In the right plot, the locking sets up at a high value of the fermion mass, where the heavy quark
effective theory provides a good description of the relevant degrees of freedoms. This case is realized close to the Banks-Zacks
point, but is possible in principle also if a strongly coupled IR fixed point is present.

B. Scaling region and locking scale

Under the hyperscaling hypothesis, the function FX defined in Eq. (21) is expected to approach a nonzero value
AX in the chiral limit. We can define the scaling region for a given channel X as the range of x = M/Λ around x = 0,
where the function FX(x) deviates from its asymptotic behavior by a small relative amount ε:

∣

∣

∣

∣

FX(x) −AX

AX

∣

∣

∣

∣

< ε . (26)

In the scaling region, the mass MX obeys the power law (24) as a function of the running mass up to corrections
of order ε. The extension of the scaling region will depend on the size of the discarded subleading contributions to
formula (24) in the chosen channel.
Consider now the square root of the fundamental string tension Mσ =

√
σ (which is well defined for dynamical

fermions in the adjoint representation) and the lightest isovector meson (which is always the pseudoscalar one), with
mass MPS. A finite value x = x̄ exists, below which both these channels are in the scaling region. This means that
below the mass Mlock = x̄Λ, the corrections to the hyperscaling behavior of Mσ and MPS masses are relatively smaller
than ε. Also the ratio MPS/Mσ for every fermionic mass below Mlock will be very similar to its asymptotic value
APS/Aσ:

∣

∣

∣

∣

MPS

Mσ
−

APS

Aσ

∣

∣

∣

∣

< O(ε) . (27)

The dynamics is dramatically different below and above the mass Mlock. In the large-mass region, M # Λ, the
gluonic and mesonic masses are parametrically independent. All the gluonic masses are proportional to Λ, while all
the mesonic masses are equal to 2M :

MPS = 2M , (28)

Mσ = BσΛ . (29)

The ratio MPS/Mσ goes to infinity in the large-mass limit. For masses below Mlock the two masses MPS and Mσ

enter the scaling region, become both independent of Λ and proportional to M . The ratio MPS/Mσ is locked to its
asymptotic value APS/Aσ. We will refer to Mlock as the locking mass.

complicated lagrangian combining mesonic 
and gluonic degrees of freedom 

MPS � Mσ

degeneracy of the glueball and meson      
spectra in the chiral limit

scaling with the fermion mass as discussed
above
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Finite-volume effects

• Finite size of the system breaks IR scale invariance

• If there exists a fixed point, these effects can be taken into account via FSS relations 

• Two caveats: 

• FSS works if 

• finite-volume effects are not described by ChPT!!

• Careful studies on large lattices are necessary

10

1/L � Λ

what is large?
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Spectrum 

• Overall picture

11
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Spectrum 

12

1.00

1.02

1.04

1.06

1.08

M
V/M

PS

16x83

24x123

32x163

64x243

0.0 0.4 0.8 1.2 1.6 2.0 2.4
MPS

4
5
6
7
8
9

10

M
PS

/σ
1/

2

largest volume

Friday, 14 October 2011



Spectrum 
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Spectrum 
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Spectrum 
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RG flows

16

pure gauge QCD-like IR conformal
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Running in the SF

17

• Schrodinger functional is a NP renormalization scheme

• Renormalization scale is set by the volume of the box L

• Continuum limit is well defined: disentangle lattice artefacts from running

• Running of the coupling and the mass are encoded in the step-scaling functions:

Σ(u, s, a/L) = g2(g0, sL/a)
��
g2(g0,L/a)=u

ΣP (u, s, a/L) =
ZP (g0, sL/a)

ZP (g0, L/a)

����
g2(L)=u

“resolution”
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Running of the coupling
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Running of the mass

19
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Two-lattice matching

20

Let us consider first for simplicity a theory that has only one relevant parameter flowing 
out from an UV fixed point; this is the common situation in pure gauge theories. In this 
case the RG trajectories converge towards a one-dimensional renormalized trajectory 
(RT). 

At each blocking step, the lattice correlation length is divided by s.

ξ̂(g)/s

ξ̂(g) = ξ/a(g)

ξ̂(g)/s2

ξ̂(g)/s3
ξ̂(g)/s4

ξ̂�(g�)/s3
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Two-lattice matching

21

simulations performed here

Compare observables 
after blocking here
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IRFP using 2lat matching

22

Assume there is only one relevant direction: mass m

(g,g’)

am

?

Neglect the running of the gauge coupling

Two-lattice matching to compute the 
running of the mass near the fixed point.

m,m� such that a(m�) = sa(m)

am�

am
= 21+γ∗

Friday, 14 October 2011



Flow of the bare mass
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Figure 6: PCAC mass, am, as a function of the bare mass, am0, on 16
4

lattices for

β = 2.15, 2.25, 2.35, 2.50
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Figure 7: HYP Matching in mass using all β values in the mass range 0.02 < am < 0.16.

Consistent with a vanishing anomalous mass dimension, γ = 1 is strongly disfavoured.

9

Matching fermion masses at constant coupling:

Friday, 14 October 2011



Running of the coupling?

24

6 Systematic Errors

6.1 Matching Observables

In principle, for a given (β, am) there should be a unique matching set of couplings
(β�, a�m�), for which all blocked observables agree after n and (n − 1) blocking steps
respectively. In this work we have set β = β� and we were able to find a�m� such that the
blocked observables matched.

In practice however, all of our observables are small Wilson loops, and as such are
strongly correlated and have a very similar dependence on β� and a�m�. This means
that we can in fact find a “matching” a�m� for a range of values of β�, which, given that
we do not know the correct value of β� to use, significantly increases the error on our
determination of γ. As an example the matching mass pairs for β = 2.25 and various
values of β� are shown in Fig. 15.
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am
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gamma=-0.6
gamma=0.1
gamma=0.6
gamma=1.6

mL=1

Figure 15: Mass matching pairs at β = 2.25 for a range of β�. Varying β� can lead to very
different results for γ. The dotted horizontal and vertical lines show mL,m�L� = 1.

In Sec. 5, while we find that sb = β − β� is compatible with zero, corresponding to
setting β = β�, the error bars are relatively large, enclosing the region −0.08 � β − β� �
0.16. From Fig. 15 we see that for β = 2.25 this region is approximately bounded by
β� = 2.15 and β� = 2.35, and encloses a large range of values for the anomalous mass
dimension, −0.6 � γ � 0.6. This range is representative of the errors in the step scaling
function due to the uncertainty in the correct value of β�, and is the dominant source of

15

More observables to get a more constrained matching

−0.6 < γ < 0.6
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Larger lattices

25

(g,g’)

am

?

In order to really probe the conformal dynamics m � 1/L

Large volumes needed to reach the small mass regime
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Conclusions

26

• Lattice simulations yield first principle results on the NP dynamics of strongly interacting 
theories

• Studies so far have focused on understanding the phase diagram (IRFP)

• Quantitative results on the spectrum and the anomalous dimensions 

• Lattice input to phenomenology

• We need to ask the right questions!!!
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Spectrum
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Spectrum 
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