
Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

1 of 71 9/1/06 5:18 AM

Java CoG Kit Karajan Workflow Reference Manual
4.1.4
From Java CoG Kit

XML

Mike Hategan and Gregor von Laszewski (gregor@mcs.anl.gov)

Administrative Notes:

Editing
The maintenance of this document is rather simple. We do NOT recommend that you edit this document
in a single edit. instead, we do require the edit as part of a subsection. This will prevent the chance that
data will get lost.

Versioning
It is extremely easy to adapt the Document to a new version. All that needs to be done is creating a new
page with the appropriate version number and pasting and copying the contents of the current
document into it. Than you just have to replace the view places where the actual version occurs. This is
best done with an editor such as emacs that has easy query replace capabilities.

Contents
1 About this Document

1.1 Command Line
1.2 Options
1.3 Experiemental Options
1.4 File
1.5 Arguments

2 The Karajan Language
2.1 The Karajan Syntax

2.1.1 Elements
2.1.2 Identifiers
2.1.3 Arguments
2.1.4 Named Arguments
2.1.5 Unnamed Arguments
2.1.6 Expressions
2.1.7 Operators
2.1.8 Quoted Lists
2.1.9 Programs
2.1.10 Comments

2.2 The XML Syntax
2.2.1 Particularities of Using XML

2.3 Parameters and Return Values
2.3.1 Parameters and Arguments

2.3.1.1 Single Value Arguments
2.3.1.2 Channels
2.3.1.3 Argument Mapping
2.3.1.4 Optional Arguments

2.3.2 Return values
2.3.3 Argument Evaluation Order

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

2 of 71 9/1/06 5:18 AM

2.4 Variables and Scope
2.4.1 Global Variables
2.4.2 Variable Expansion
2.4.3 Futures

3 Modularisation
3.1 Source Files
3.2 Libraries
3.3 Namespaces

4 Kernel Library
4.1 Kernel Constants

4.1.1 kernel:true
4.1.2 kernel:false
4.1.3 kernel:cmdline:arguments
4.1.4 kernel:user.home
4.1.5 kernel:user.name

4.2 Kernel Elements
4.2.1 kernel:project
4.2.2 kernel:import
4.2.3 kernel:export
4.2.4 kernel:define
4.2.5 kernel:namespace
4.2.6 kernel:elementdef
4.2.7 kernel:named
4.2.8 kernel:number
4.2.9 kernel:string
4.2.10 kernel:variable
4.2.11 kernel:quotedlist
4.2.12 kernel:cache

5 System Library
5.1 Flow Control Elements

5.1.1 sys:sequential
5.1.2 sys:parallel
5.1.3 sys:unsynchronized
5.1.4 sys:choice
5.1.5 sys:catch
5.1.6 sys:guard
5.1.7 sys:race
5.1.8 sys:for
5.1.9 sys:parallelFor
5.1.10 sys:while
5.1.11 sys:condition
5.1.12 sys:break
5.1.13 sys:continue
5.1.14 sys:if
5.1.15 sys:then
5.1.16 sys:exclusive

5.2 Elements Dealing with Variables and Arguments
5.2.1 sys:set
5.2.2 sys:default
5.2.3 sys:maybe
5.2.4 sys:global
5.2.5 channel:to
5.2.6 channel:from
5.2.7 channel:close
5.2.8 channel:fork
5.2.9 sys:isDefined
5.2.10 sys:quoted
5.2.11 sys:discard
5.2.12 sys:future

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

3 of 71 9/1/06 5:18 AM

5.2.13 sys:futureIterator
5.2.14 sys:each

5.3 Element Definition Elements
5.3.1 sys:element
5.3.2 sys:parallelElement
5.3.3 sys:channel
5.3.4 sys:optional
5.3.5 sys:self

5.4 Service Interaction Elements
5.4.1 sys:remote

5.5 List Manipulation Elements
5.5.1 list:list
5.5.2 list:append
5.5.3 list:prepend
5.5.4 list:join
5.5.5 list:size
5.5.6 list:first
5.5.7 list:last
5.5.8 list:butFirst
5.5.9 list:butLast
5.5.10 list:isEmpty

5.6 Map Elements
5.6.1 map:map
5.6.2 map:entry
5.6.3 map:put
5.6.4 map:delete
5.6.5 map:get
5.6.6 map:size
5.6.7 map:contains

5.7 Logic Elements
5.7.1 sys:and
5.7.2 sys:or
5.7.3 sys:not
5.7.4 sys:equals
5.7.5 sys:true
5.7.6 sys:false

5.8 Numeric Elements
5.8.1 math:sum
5.8.2 math:product
5.8.3 math:subtraction
5.8.4 math:quotient
5.8.5 math:remainder
5.8.6 math:square
5.8.7 math:sqrt
5.8.8 math:equalsNumeric
5.8.9 math:greaterThan
5.8.10 math:lessThan
5.8.11 math:greaterOrEqual
5.8.12 math:lessOrEqual
5.8.13 math:min
5.8.14 math:max
5.8.15 math:int
5.8.16 math:ln
5.8.17 math:exp
5.8.18 math:random

5.9 Error Handling Elements
5.9.1 sys:ignoreErrors
5.9.2 sys:restartOnError
5.9.3 sys:generateError

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

4 of 71 9/1/06 5:18 AM

5.9.4 sys:onError
5.10 String Elements

5.10.1 str:concat
5.10.2 str:split
5.10.3 str:strip
5.10.4 str:matches
5.10.5 str:nl
5.10.6 str:chr

5.11 Miscellaneous Elements
5.11.1 sys:print
5.11.2 sys:echo
5.11.3 sys:checkpoint
5.11.4 sys:wait
5.11.5 sys:time
5.11.6 sys:file
5.11.7 sys:executeElement
5.11.8 sys:elementList
5.11.9 sys:cacheOn
5.11.10 sys:numberFormat
5.11.11 sys:file
5.11.12 sys:uid
5.11.13 sys:file
5.11.14 sys:file
5.11.15 sys:outputStream
5.11.16 sys:closeStream
5.11.17 sys:sort
5.11.18 sys:dot
5.11.19 sys:cross
5.11.20 sys:stats
5.11.21 sys:filter
5.11.22 sys:info

5.12 Notes
6 Task Library

6.1 Task Elements
6.1.1 task:scheduler
6.1.2 task:handler
6.1.3 task:resources
6.1.4 task:host
6.1.5 task:service
6.1.6 task:securityContext
6.1.7 task:allocateHost
6.1.8 task:host
6.1.9 task:execute
6.1.10 task:transfer
6.1.11 task:file:list
6.1.12 task:file:remove
6.1.13 task:file:exists
6.1.14 task:dir:make
6.1.15 task:dir:remove
6.1.16 task:file:isDirectory
6.1.17 task:file:chmod
6.1.18 task:file:rename
6.1.19 task:SSHSecurityContext
6.1.20 task:InteractiveSSHSecurityContext
6.1.21 task:passwordAuthentication
6.1.22 task:publicKeyAuthentication

7 Java Library
7.1 Java Elements

7.1.1 java:new

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

5 of 71 9/1/06 5:18 AM

7.1.2 java:invokeMethod
7.1.3 java:executeMain
7.1.4 java:getField
7.1.5 java:waitForEvent
7.1.6 java:classOf
7.1.7 java:null

8 HTML Library
8.1 HTML Elements

8.1.1 html:write
8.1.2 html:quickstart
8.1.3 html:html
8.1.4 html:head
8.1.5 html:title
8.1.6 html:body
8.1.7 html:table
8.1.8 html:tr
8.1.9 html:td
8.1.10 html:th
8.1.11 html:h1
8.1.12 html:h2
8.1.13 html:h3
8.1.14 html:h4
8.1.15 html:h5
8.1.16 html:h6
8.1.17 html:ul
8.1.18 html:pre
8.1.19 html:br
8.1.20 html:li
8.1.21 html:a
8.1.22 html:anchor
8.1.23 html:img
8.1.24 html:text

9 Forms Library
9.1 Concepts

9.1.1 Component ID
9.1.2 Component Layout
9.1.3 Component Alignment

9.2 Form Elements
9.2.1 form:form
9.2.2 form:hbox
9.2.3 form:vbox
9.2.4 form:label
9.2.5 form:button
9.2.6 form:checkBox
9.2.7 form:radioBox
9.2.8 form:radioButton
9.2.9 form:textField
9.2.10 form:passwordField
9.2.11 form:comboBox
9.2.12 form:comboItem
9.2.13 form:HSeparator
9.2.14 form:VSeparator
9.2.15 form:filler
9.2.16 form:messageDialog

10 Restart Library
10.1 rlog:restartLog
10.2 rlog:logged

11 Service
11.1 Using the Service

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

6 of 71 9/1/06 5:18 AM

11.2 Shared or Personal
11.3 Limiting Access to Resources in Shared Mode
11.4 Communication Layer Configuration
11.5 The Secure (Grid-Mapped) Local Provider

11.5.1 Pre-built Packages
11.5.2 Building From Source

12 Embeding Karajan into Java
13 Notes
14 References

About this Document
This page contains the Reference manual. Although it contains all of the features, we do recommend that
you start with the examples document at http://wiki.cogkit.org/index.php/Java_CoG_Kit_Workflow_Guide

Command Line
Usage:

Options
(-execute | -e) <string>

Execute the script given as argument

-showstats
Show various execution statistics at the end of the execution

-debug
Enable debugging. This will enable a number of internal tests at the expense of speed. You should not
use this since it is useful only for catching subtle consistency issues with the interpreter.

-monitor
Shows a resource monitor

-dumpstate
If specified, in case of a fatal error, the interpreter will dump the state in a file

-intermediate
Saves intermediate XML code resulting from the translation of .k files

(-help | -h)
Display usage information

Experiemental Options
The following options have been added and are considered to be experiemental. They are still in the
debugging stage.

-debugger

 cog-workflow <options> file <arguments>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

7 of 71 9/1/06 5:18 AM

Starts the internal graphical debugger

-cache
Enables cache persistence

File
The file represents the name of the script to run, in either CoG Kit XML or CoG Kit K syntax. A CoG Kit
karajan file structure is rather simple and similar to what you would are used to form other programming
languages. A CoG Kit Karajan file starts with a series of imports, followed by a block of statements. It is
important to note that we have two ways to express CoG Kit karajan syntax. Both are explained in more
detail in the following sections.

All Karajan files usually start with the import of the most generally used libraries

in k syntax:

in xml syntax:

Arguments
Arguments to the script can be specified after the file name. They are distinct from the interpreter options,
and are passed to the script as a constant, in the form of a list named "cmdline:arguments". More information
about commandlines can be found here
(http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow_Reference_Manual_4.1.4#kernel:cmdline:arguments

The Karajan Language
Karajan supports two syntax modes: a syntax called k and an equivalent form called XML. There is no
difference on the semantic level between the two forms.

The Karajan Syntax
The following conventions are used:

Elements

import("cogkit.xml")
print("hello world")

<import file="cogkit.xml">
<print message="Hello World">

(xy) is used to group x and y
[x] indicates that x is optional
x+ denotes at least one occurrence of x
x* denotes zero or more occurrences of x
x|y means either x or y
'x' is to be interpreted as the literal x
ε represents the empty production

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

8 of 71 9/1/06 5:18 AM

The Karajan semantics revolve around the notion of elements. An element is relatively similar to a function
in that it has a name, can accept arguments, and may return values. The general syntax for an element is:

Example:

Identifiers

An identifier can consist of alpha-numeric characters and certain symbols, but no whitespace. Symbols that
cannot be used in an identifier are symbols that have other syntactic functions, such as brackets (all of them),
commas, double quotes, and operators (’+’, ’-’, ’*’, ’/’, ’%’, ’^’, ’=’, ’<’, ’>’, ’&’, ’|’). Identifiers are case
insensitive.

Example:

Identifiers cannot begin with a digit.

Arguments

The arguments can either be other elements or values, such as numeric values or strings. Elements can be
separated by commas or the new line character (or both):

Example:

Arguments come in two flavors. Named arguments and unnamed arguments:

Named Arguments

element ::= identifier '(' [arguments] ')'

print(1)
false()

identifier ::= (Letter | Digit | '!' | '@' | '#' | '$' | '%' |
 | '_' | ':' | ';' | ''' | '.' | '?' | '\' | '`' | '~')+

var, i, v123, @, a$, big_list, grid:task, file.list

arguments ::= argument [separator arguments]) | ε
separator ::= ',' | Newline

list(true(), false())
list(
 true()
 false()
)
list(true(),
 false())

argument ::= named_argument | unnamed_argument

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

9 of 71 9/1/06 5:18 AM

Named arguments provide a way of explicitly binding arguments to formal parameters:

Example:

Unnamed Arguments

Unnamed arguments can be either immediate values, elements or expressions. Immediate values can be
numeric literals, string literals, variables, or quoted lists:

Example:

Expressions

Expressions consist of unnamed arguments to which operators are applied. Parantheses can be used to
override the default precedence of operators in expressions.

Examples of expressions:

named_argument ::= identifier '=' unnamed_argument

print(true(), nl = false())

unnamed_argument ::= numeric_literal | string_literal | variable | quoted_list |
 | element | expression

numeric_literal ::= ['+'|'-'] digit+ ['.' digit+]

digit ::= '0'... '9'

string_literal ::= '"' any_characters_but_double_quotes '"'

variable ::= identifier

list(1, 2.3, -4.56,
 +7.890, "A string", list("Another string value in a nested list", "*2"))

expression ::= unnamed_argument operator unnamed_argument |
 | '(' expression ')'

set(a, 1+2*3-4)
set(b, subtraction(sum(1, product(2, 3)), 4))
print(a, " = ", b)

<set name="a">
 <subtraction>
 <sum>
 <product>
 <number>2</number>
 <number>3</number>
 </product>
 </sum>
 <number>4</number>
 </subtraction>
</set>
<print message="a = {a}"/>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

10 of 71 9/1/06 5:18 AM

Operators

The native Karajan syntax supports basic arithmetic and logic operators:

The following lists enumerates operators in the order of precedence, starting with the highest precedence.
While the XML syntax does not support the use of operators, each operator has an equivalent element which
can be used in both syntaxes (shown in parentheses).

Multiplicative operators
* (product) Multiplication
/ (quotient) Division
% (remainder) Remainder

Additive operators
+ (sum) Addition
- (subtraction) Subtraction

High priority relational operators
<= (lessOrEqual) Less or equal
>= (greaterOrEqual) Greater or equal
< (lessThan) Strictly less
> (greaterThan) Strictly greater

Low priority relational operators
== (equals) Equals
!= (No equivalent, but not(equals(...)) can be used) Does not equal

Multiplicative logic operators
& (and) Logical AND

Additive logic operators
| (or) Logical OR

Quoted Lists

A quoted list is a special element that produces a list of identifiers. What is specific about a quoted list is that
if its arguments are variables, the variables will not be evaluated. Instead their identifiers will be added to the
list. Quoted lists are convenience syntax for expressing a list of formal arguments:

However, quoted lists are not limited to expressing list of arguments. They can also be used to express lists of
values. The only thing to remember is that variable evaluation will not take place for immediate arguments
of a quoted list.

Example:

Programs

operator ::= '*' | '/' | '%' | '+' | '-' | '<=' | '>=' | '<' | '>' |
 | '==' | '!=' | '&' | '|'

quoted_list ::= '[' arguments ']'

list("A quoted list follows", [a, b, c])

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

11 of 71 9/1/06 5:18 AM

A Karajan program is a list of arguments:

There exists an implicit root element that sits at the top of the element tree, and implements certain system
functions.

Comments

And finally, Karajan uses C-style comments. Single-line comments begin with two forward slashes and end
at the following new line character, while multi-line comments are delimited by ’/*’ and ’*/’:

The XML Syntax
Karajan also supports XML as its syntax. In the XML syntax, each XML element corresponds to a Karajan
element. Arguments can be expressed either through XML attributes or nested elements.

Particularities of Using XML

One of the particular aspects of using XML with Karajan is that when using XML attributes for arguments, it
is impossible to make a syntactic distinction between a numeric value and its string representation. In
general, Karajan will try to use the context to figure out which one is desired, but there are instances when it
is impossible to do so. Therefore, when using the XML syntax, the following elements can be used for the
purpose of differentiating between numeric and string values: number and string

The equivalent Karajan construct would be:

Karajan can load and interpret arbitrary XML files, provided that definitions exist for the XML elements
present in the file, but XML mixed content is not handled properly. The unfortunate aspect is that it is
impossible to handle XML mixed content in a generic way. For example, it cannot be known whether
whitespace between two XML elements is to be interpreted as content or not, without knowledge of the
implementation of an element. Since Karajan is a dynamic language, the implementation of an element is not
known statically, at the time the parsing takes place. Therefore, the following rule was adopted: An element
will consider textual content content if and only if no nested elements exist. If nested elements exist, textual
content will be ignored.

program ::= arguments

//This is a comment
print("This is not a comment")
/*This is
 also a
 comment
 */

<list>
 <number>1</number>
 <string>1</string>
</list>

list(1, "1")

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

12 of 71 9/1/06 5:18 AM

If processed, textual content will be mapped as a string argument. A consequence of the above rule is that
textual content and multiple arguments are mutually exclusive.

Lastly, a well-formed XML document must always have a root element. While in the native Karajan syntax,
the root element is implicit, in XML the project or karajan elements can be used as root elements.

Parameters and Return Values
An element can accept any number of arguments and can generate any number of return values, and that
includes an infinite number of arguments and/or return values (at least in theory).

Parameters and Arguments

Arguments are divided into two major types: single value arguments and channels. As their name implies,
single value arguments can have only one value. By contrast, channels can be used for any number of
values.

Single Value Arguments

Single value arguments can be specified using the named argument form. For example, the print element has
a message argument. Thus passing a string as the message argument to print element can be done in the
following way:

Or in XML:

Single value arguments can be further divided into mandatory and optional arguments.

Channels

Channels can be used to pass multiple arguments to an element. Each channel has a name, except for the
default channel. The default channel is similar to the notion of variable arguments in C. Passing arguments
on the default channel is done implicitly when arguments are not passed as single value arguments:

k:

xml:

print(message = "Some string")

<print message = "Some string"/>

<print>
 <argument name = "message" value = "Some string"/>
</print>

list(1, "value")

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

13 of 71 9/1/06 5:18 AM

See Also: list, number, string

In the above case, 1 and ”value” are both passed to the list element on the default channel.

Elements define whether they do receive arguments on a specific channel or not. One possibly interesting
aspect is that an element that does not process arguments on a channel, will automatically return all values
received on that channel. It is therefore possible to use named channels to return values to elements other
than the immediate parent. Assuming that foo is an element that does not take any arguments on any
channels, the following will produce the same result:

Since foo does not process any arguments, all the arguments it receives on the default channel will be
returned to the parent element.

Argument Mapping

It is not always convenient to use the named argument form to pass arguments to an element. Elements in
Karajan will automatically map arguments received on the default channel to single value arguments. The
mapping is done dynamically, in the order arguments are received. Suppose there is an element foo that
takes three arguments, namely one, two and three. The following would then be equivalent:

<list>
 <number>1</number>
 <string>value</string>
</list>

list(1, 2, 3)
list(foo(1, 2, 3))

<list>
 <number>1</number>
 <number>2</number>
 <number>3</number>
</list>

<list>
 <foo>
 <number>1</number>
 <number>2</number>
 <number>3</number>
 </foo>
</list>

foo(one = 1, two = 2, three = 3)
foo(one = 1, two = 2, 3)
foo(one = 1, 2, 3)
foo(1, 2, 3)
foo(1, 2, three = 3)
...

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

14 of 71 9/1/06 5:18 AM

Optional Arguments

The unfortunate side-effect of using automatic mapping of default channel arguments to single value
arguments is that elements that would accept both single value arguments and arguments on the default
channel (variable arguments) cannot avoid mapping of variable arguments to certain single value arguments
unless different semantics are introduced: optional arguments. Optional arguments do not need to be
specified. However, if specified, the named form must always be used. An example is the print element,
which has an optional argument named nl . It can be set to false to indicate that no new-line character
should be appended at the end of the message argument:

or

The following however, is not valid:

Return values

Return values are a mirror image of the arguments concept. Whatever can be accepted as an argument by an
element can also be returned by another. Thus, it is possible to define a single element that returns all
arguments to any given element. The following example defines an element that returns both a message and
the named form of the nl argument, suitable for the print element:

<foo one = "1" two = "2" three = "3"/>
<foo one = "1" two = "2">
 <number>3</number>
</foo>
<foo one = "1">
 <number>2</number>
 <number>3</number>
</foo>
<foo>
 <number>1</number>
 <number>2</number>
 <number>3</number>
</foo>
<foo>
 <number>1</number>
 <number>2</number>
 <argument name="three" value="3"/>
</foo>
...

print(message = "Message", nl = false())

print("Message", nl = false())

print("Message", false())

//The following defines an element foo() which takes no
//arguments and returns "Message" and nl = false()
element(foo, []
 "Message", nl = false()
)

print(foo())

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

15 of 71 9/1/06 5:18 AM

Argument Evaluation Order

There is no imposed order for evaluating arguments. The order is controlled by each element. Most
elements, by default, evaluate their arguments in sequential order. However, it is very easy to override the
default order by using elements that use a different execution order. For example, the parallel element
evaluates all of its arguments in parallel, returning all the resulting values. Evaluating the arguments to an
element in parallel then becomes as easy as surrounding them with a parallel element:

Furthermore, the way in which an element processes the arguments is also left to each element. For example,
an element can choose to start executing after the evaluation of all arguments has been completed, or process
arguments as they arrive. In other words, and in the most general case, arguments are both generated and
processed asynchronously.

A concrete example is the print element, which simply returns the message argument on the stdout
channel. When Karajan starts execution, an implicit root element is created that receives arguments on the
stdout channel, and prints them to the console. Since the processing is done asynchronously, the
appearance of print doing the actual work when executed is achieved. The advantage of such a
mechanism is that, provided that an element does not produce any side-effects, its execution becomes
equivalent to the totality of values returned (both single values, and channels).

Variables and Scope
We will not insult the reader’s intelligence by explaining what variables are. There is no explicit declaration
of variables in Karajan. A variable is defined when it is assigned the first time.

The scope of a variable extends to the element that it was defined in, and is pseudo-lexical. By
pseudo-lexical it is meant that internally, the scoping is dynamic, but provisions are made to make it
impossible to access variables outside the lexical scope. Therefore, Karajan does not support closures.

On a lexical level, it is possible to read the value of a variable defined in a parent element, but setting the

<element name="foo" arguments="">
 <string>Message</string>
 <argument name="nl">
 <false/>
 </argument>
</element>

<print>
 <foo/>
</print>

list(
 parallel(
 "Value1"
 "Value2"
)
)

<list>
 <parallel>
 <string>Value1</string>
 <string>Value2</string>
 </parallel>
</list>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

16 of 71 9/1/06 5:18 AM

value of the same variable will create a new scope. In other words, Karajan uses deep access and shallow
binding. The following example should make things clearer:

In the above example, it would be impossible for the definition of list to access variable v, since the body of
the definition of list does not fall within the lexical scope of the definition of v.

The reason for this kind of scoping is to reduce the ambiguity that could be introduced by not knowing the
order in which child elements are executed. Please note that such ambiguity is not completely eliminated.
The order in which the arguments to list are evaluated does matter, and can change the resulting list.
However, the scope of the ambiguity is the same as the scope of the ambiguity in the order of evaluation of
the elements. If set, list, and print are evaluated in sequence, no change in the way list evaluates its arguments
can change the outcome of the execution of print(v). 1

Global Variables

Global variables are provided for conveniently defining settings that have a global scope. Please note that in
the future, global variables will be single-assignment, this approaching more the notion of constants.

Variable Expansion

Karajan offers convenient variable expansion constructs. All pairs of curly brackets inside strings are
replaced by the value of the variable with the name of the identifier inside the brackets. If no such variable
exists, the element trying to access the string will fail. If the ’{’ literal is needed inside a string, it must be
used twice. There is no need to escape the closing curly bracket, since it cannot be part of an identifier. If a
closing bracket is part of a variable expansion expression, it will mark its end. If not, it will be interpreted as
the closing curly bracket literal:

...
set(v, 1) // v is '1' on stack frame n
list(// A new stack frame is created: n+1
 v // v refers to the variable on frame n
 set(v, 2) // A new binding is made for v on frame n+1
 // the new binding shadows the one from frame n
 v // v now refers to the binding on frame n+1
) // The returned list contains the values 1 and 2
print(v) //v refers again to the binding on frame n
 //Therefore the printed value will be 1
...

...
<set name="v" value="1"/>
<list>
 <variable>v</variable>
 <set name="v" value="2"/>
 <variable>v</variable>
</list>
<print>
 <variable>v</variable>
</print>
...

global(foo, "Foo")
element(boo, []
 print(foo)
)
boo()

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

17 of 71 9/1/06 5:18 AM

Futures

Futures are a mechanism of binding a variable to the results of a future computation. Until the value of the
computation to which the future is bound to, the future exists in an unbound state. Any attempt to use the
value of an unbound future will cause the execution of the thread that tried to access the future to block until
the future becomes bound.

In Karajan there are two types of futures:

single value futures
are used to hold a single value of a future computation. They are defined using the future element.

future iterators
can be used to hold multiple values. However, not all the values need to be generated before the future
iterator can be used. Iterating over a future iterator will cause the iteration to use as many values as are
available, then block waiting for more values to be added to the future iterator. Future iterators are
defined using futureIterator.

Modularisation
Source Files
As mentioned in Section ??, Karajan understands two syntaxes: the native Karajan syntax and the XML
syntax. The distinction between them is made using the file extension. A file with the “.k” extension will be
parsed using the native parser, while a file with the “.xml” syntax will be parsed using an XML parser. [1]

Libraries
Libraries are collections of elements grouped by the functionality they provide. A library is defined in a
source file. Its functionality can be reused in other source files by using the import (equivalent to
include) element:

It is possible to include XML libraries from native Karajan files. It is also possible to include native Karajan
libraries from XML Karajan files. Consequently, the following are valid:

set(a, 1)
print("A is {a}")
print("An opening curly bracket: {{")
print("A closing curly bracket: }")

<set name="a" value="1"/>
<print message="A is {a}"/>
<print message="An opening curly bracket: {{"/>
<print message="A closing curly bracket: }"/>

import("sys.k")

import("task.xml")

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

18 of 71 9/1/06 5:18 AM

Namespaces
Namespaces provide a way of distinguishing between elements with conflicting names in different libraries.
Suppose a library “a” defines an element named foo, and a library “b” also defines an element named foo.
Also, suppose that both libraries are included in a certain file. Namespaces make it possible to access both
instances of the foo definition, without ambiguity, by prefixing the name with the namespace prefix in
which the element was defined: a:foo and b:foo. Any reference to foo without a prefix will result in an
error. Nonetheless, if only one of the libraries is used, the use of foo without a prefix will be allowed.
Namespaces are defined using namespace.

Kernel Library
The Karajan kernel contains a minimum set of elements that are required in order to get the rest of the
system running. All kernel elements are automatically available in any program.

Kernel Constants
kernel:true

true
Represents the true boolean value

kernel:false

false
Represents the false boolean value

kernel:cmdline:arguments

cmdline:arguments

Holds a list with the command line arguments (if any). Arguments to the CoG Kit karajan script can
be specified after the file name. They are distinct from the interpreter options, and are passed to the
script as a constant, in the form of a list named "cmdline:arguments".

kernel:user.home

user.home
Contains the path to the user home directory

kernel:user.name

user.name
Contains the current user's name

Kernel Elements

<import file="task.k"/>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

19 of 71 9/1/06 5:18 AM

kernel:project

kernel:project(stdout)

Aliases: karajan

The root element of a Karajan program. Accepts arguments on the stdout channel and prints them
immediately on the console.

kernel:import

kernel:import(file, ...)

Aliases: include

Executes the file specified by the file argument. All arguments received on the default channel are
considered to be element definitions (created with export), which import binds to the parent environment,
such that after import completes execution, the definitions will be available for use.

Import uses the library search path specified in etc/karajan.properties, which defaults to
searching the current directory first, then the Java class path. If no file with the given name is found in the
library search path, import will fail.

kernel:export

kernel:export(name, value)

Returns the pair (name, value). The value argument should be a lambda, which can be bound by
import.

It is also possible for export to be used without arguments, but with a set of immediately enclosed
definitions. In this case it would take all the definitions and export them. This makes it easier to have old
code somewhat cleanly converted:

kernel:define

kernel:define(name, value)

Binds a lambda, specified by the value argument to the given name.

kernel:namespace

foo(
 import("file.k")
) //scope of foo() ends

export(foo, element([x], print(x)))

export(
 element(x, [], print("x"))
 element(y, [], print("y"))
)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

20 of 71 9/1/06 5:18 AM

kernel:namespace(prefix)

Allows the specification of a namespace prefix. Any elements defined in the scope of namespace will
automatically have the prefix indicated by the prefix argument, unless another namespace is nested.

kernel:elementdef

kernel:elementdef(type, classname)

Used by the current implementation to map element names to Java implementation classes.

kernel:named

kernel:named(value, *name)

Used internally by the named argument form, but can be used by the user equally well. The following are
equivalent:

However, the fact that the *name argument is optional makes it impossible to completely avoid the named
form.

If the *name argument is not present, it simply returns the value of the value argument on the default
channel.

kernel:number

kernel:number(value)

Can be used with the XML syntax to represent a number. There is no distinction between integral numbers
and floating point numbers in Karajan.

kernel:string

kernel:string(value)

Can be used with the XML syntax to represent a string value.

kernel:variable

kernel:variable(name)

Used to represent the value of a variable.

Example:

print("Test", nl = false())
print("Test", kernel:named(name = nl, false())

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

21 of 71 9/1/06 5:18 AM

will return the list [10, “10”, 5].

kernel:quotedlist

kernel:quotedlist(...)

Used internally to represent a quoted list. The following two lines of code will produce the same result:

kernel:cache

kernel:cache()

Caches the evaluation of the arguments. Upon subsequent executions of cache, the arguments will not be
re-evaluated. Instead, the cached values will be returned. Cache does not make any checks for the invariance
of the evaluation of the arguments.

System Library
Files: sys.k, sys.xml

The system library contains general purpose elements that help implement the most common tasks in
Karajan.

Flow Control Elements
sys:sequential

sys:sequential()

Executes all arguments in sequence.

sys:parallel

sys:parallel()

Executes all arguments in parallel.

sys:unsynchronized

sys:unsynchronized()

<set name="n" value="5"/>
<list>
 <number>10</number>
 <string>10</string>
 <variable>n</variable>
</list>

[a, b, c]
quotedlist(a, b, c)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

22 of 71 9/1/06 5:18 AM

Asynchronously executes all arguments in sequence. Does not return any value. If return values from
asynchronous computations is required, use either future or futureIterator

sys:choice

sys:choice()

Executes arguments in succession. Terminates when one of the arguments completes successfully. If an
argument fails, the next argument will have access to the following variables:

element
Contains a reference to the element that caused the initial failure.

error
A textual message detailing the error that occurred

trace
A textual representation of the Karajan stack trace.

exception
Available if a Java exception caused the failure.

If no argument completes successfully choice will fail with the last failure encountered.

Choice exhibits a transactional behavior when it comes to return values. All single values and all channels
are buffered until one argument completes successfully. If that happens then choice returns the buffered
values. If an argument fails, all the buffered values produced by that argument are discarded.

See also: catch

sys:catch

sys:catch(match)

Catch will match the error variable against the regular expression in match. If successful, it will execute
the rest of its arguments, otherwise it will fail with the last failure encountered. Catch can be used with
choice to selectively handle specific failures:

sys:guard

sys:guard()

Guard expects two sub-elements. It will execute the first, then the second, even if the first one fails. In other
words, the second sub-element will always be executed. If the first element failed, after executing the second
element, guard will also fail. If the second element fails, guard will fail with the same error, regardless of
whether the first element failed or not. Guard can be used to implement clean-up actions, in a fashion
similar to try/finally from C++, Java or Python:

choice(
 ...
 catch(".*File not found.*"
 print("File not found")
)
 catch(".*Connection refused.*"
 print("Connection refused")
)
)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

23 of 71 9/1/06 5:18 AM

sys:race

sys:race()

Aliases: parallelChoice

Can be used to race a number of arguments. Race will execute all its arguments in parallel, buffer their
return values, and wait for the first one that completes. It will then return all the values that the winner
generated. If an any argument fails before any other argument completes, then race will fail.

Race is similar in behavior to the discriminator workflow pattern.

sys:for

sys:for(name, in)

Can be used to iterate sequentially across a range of values. The name argument is an identifier that indicates
the name of the variable that will be set to the successive values of the in argument, which Karajan will try to
convert to an iterator before beginning the iteration process.

After evaluating name and in, for will proceed and evaluate the rest of the arguments repeatedly, while
setting the variable indicated by the name argument to each value produced by the iterator (in).

Example:

will return true

sys:parallelFor

sys:parallelFor(name, in)

Will behave in a similar way to for with the exception that iterations will occur in parallel. Each iteration
will occur in a separate scope. Therefore variables set in one of the iterations will not be visible in the others
(which is also the case with for). Each scope will have the variable indicated by the name argument set to

set(myhost, "sunny.mcs.anl.gov")
transfer(srcfile="a", desthost=myhost)
guard(
 sequential(
 execute(executable="/usr/bin/hammer", arguments="a", host=myhost,
 provider="gt2")
)
 sequential(
 //always clean up
 file:remove(name="a", host=myhost, provider="gridftp")
)
)

equals(
 list(
 for(i, range(1, 5), i)
)
 list(1, 2, 3, 4, 5)
)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

24 of 71 9/1/06 5:18 AM

one of the values obtained from the in argument.

sys:while

sys:while(condition)

Will repeatedly execute its arguments in sequence until a value of false is received on the condition
channel. A convenience element that returns a boolean argument on the condition channel is
condition (or ?). While will check for a condition every time an argument completes. It is therefore
possible to exit the loop after the termination of any of the arguments.

Example:

will return the following lists:

Or, in XML:

list(
 while(
 1, 2, 3, ?(false)
)
)

list(
 while(
 1, ?(false), 2, 3
)
)

list(
 while(
 ?(false), 1, 2, 3
)
)

list(
 while(
 sequential(
 ?(false)
 0
 /* zero will make it to the list
 * because while will only do the check
 * after sequential() completes
 */
)
 1, 2, 3
)
)

[1,2,3]
[1]
[]
[0]

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

25 of 71 9/1/06 5:18 AM

sys:condition

sys:condition(value)

Aliases: ?

Evaluates the value argument and returns its value on the condition channel.

sys:break

sys:break()

Can be used to break out of a while loop. By contrast with using the condition channel, break will
immediately exit the loop, no matter how deep the nesting level. It does that by generating a failure, which is
intercepted by the enclosing while.

sys:continue

sys:continue()

Can be used to skip the evaluation of the remaining arguments in an iteration in a while loop and jump to

<list>
 <while>
 <number>1</number>
 <number>2</number>
 <number>3</number>
 <condition>
 <false/>
 </condition>
 </while>
</list>

<list>
 <while>
 <number>1</number>
 <condition>
 <false/>
 </condition>
 <number>2</number>
 <number>3</number>
 </while>
</list>

<list>
 <while>
 <condition>
 <false/>
 </condition>
 <number>1</number>
 <number>2</number>
 <number>3</number>
 </while>
</list>

<list>
 <while>
 <sequential>
 <condition>
 <false/>
 </condition>
 <number>0</number>
 </sequential>
 <number>1</number>
 <number>2</number>
 <number>3</number>
 </while>
</list>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

26 of 71 9/1/06 5:18 AM

the next iteration. Similar to break, continue achieves its purpose by generating a failure which is
intercepted by while.

sys:if

sys:if()

Executes its elements using the following scheme:

start with k = 01.
evaluate element 2 * k;2.
if element 2 * k is the last element, then return its return values and complete3.
if no value is element by argument 2 * k, fail4.
if value returned by element 2*k is true then evaluates element 2*k+1 returning its return values, and
completes

5.

if value returned by element 2 * k is false then continue with k = k + 16.

Informally:

<condition>, <then>, and <else> can be any elements. However, each <condition>, <then>, and <else> must
be only one element (possibly with multiple child elements). For convenience and clarity then and else
can be used.

sys:then

sys:then()

Aliases: else

Then and else are the same as sequential, but can be used to make constructs using if more
intuitive:

if(
 <condition> <then>
 [<condition2> <then2>
 [<condition3> <then3>
 ...]]
 [<else>]
)

if(
 a == 1
 then(print("a is 1"))
 a == 2
 then(print("a is 2"))
 else(print("a is not 1 nor 2"))
)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

27 of 71 9/1/06 5:18 AM

sys:exclusive

sys:exclusive()

Defines a mutual exclusion block. It guarantees that at any give time, within a given execution, only one
instance of this (lexically) exclusive element is executing.

Elements Dealing with Variables and Arguments
sys:set

sys:set(names, ...)

Sets a variable or more to a value (or more). Set tries to interpret the first argument as an identifier or a list
of identifiers. If the first argument is an identifier, it is treated as being a list with one identifier. Set expects
the number of arguments on the default channel to be the same as the number of identifiers. It is important
that a quoted list be used to specify the list of identifiers in order to avoid evaluating the variables that the
identifiers represent:

Differences in XML:

The XML variant of the set element uses a slightly different set of arguments. If a single variable is
assigned, the name argument can be used. If multiple variables are assigned, the names argument must be
used. As opposed to the native syntax, the names argument can be a string of comma separated identifiers
which will be tokenized by set

sys:default

<if>
 <equals>
 <number>1</number>
 <variable>a</variable>
 </equals>
 <then>
 <print message = "a is 1"/>
 </then>
 <equals>
 <number>2</number>
 <variable>a</variable>
 </equals>
 <then>
 <print message = "a is 2"/>
 </then>
 <else>
 <print message = "a is not 1 nor 2"/>
 </else>
</if>

set(a, 1)
set([a], 1)
set([a, b, c], 1, 2, 3)

<set name="a" value="1"/>
<set names="a, b, c">
 <number>1</number>
 <number>2</number>
 <number>3</number>
</set>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

28 of 71 9/1/06 5:18 AM

sys:default(name, value)

Assigns a value to a variable if no binding of that variable can be accessed within the current scope. If an
accessible variable with the indicated name is already defined, then the assignment does not take place:

sys:maybe

sys:maybe()

Evaluates its arguments. If the evaluation completes successfully, it returns all the arguments. If the
evaluation fails at any point, maybe completes without returning anything. In particular, maybe can be
used in extending existing elements with optional arguments:

sys:global

sys:global(name, value)

Sets a global variable. A global variable is a variable that has a global scope, and thus can be accessed from
anywhere within the program. While the use of global variables is discouraged, it can prove useful to create
constant-like definitions.

Differences in XML:

The XML variant of global uses the same arguments as the XML variant of the set element.

sys:...()

Aliases: vargs

Can be used inside an element definition to return all arguments received on the default channel.

Differences in XML:

In the XML syntax the vargs alias must be used, because “...” is not a valid XML element name.

channel:to

channel:to(name, ...)

Returns all arguments received on the default channel on the specified channel.

default(a, 1)
//a is assigned the value 1
set(b, 2)
default(b, 3)
//b is not assigned the value of 3 because
//b is already accessible within the current scope

element(one, [a, b, optional(c, d)]
 print("a = {a}", "b = {b}", maybe("c = {c}"), maybe("d = {d}"))
)

element(two, [a, b, optional(c, d)]
 one(a = a, b = b, maybe(c = c), maybe(d = d))
)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

29 of 71 9/1/06 5:18 AM

channel:from

channel:from(name, <varies>)

Returns all arguments received on the specified channel on the default channel.

channel:close

channel:close(name)

Closes a channel. All iterations that are active on that channel and waiting for values will complete.

channel:fork

channel:fork(name, count)

Splits a channel into a number of identical channels and returns these channels. All values written to the
initial channel will be available in all the forked channels. Reading from the original channel will cause
inconsistencies and should not be done. When the original channel is closed, all the forked channels will also
be closed.

sys:isDefined

sys:isDefined(name)

Determines whether a variable is accessible within the current scope. Returns true if it is; false otherwise.

sys:quoted

sys:quoted(name)

Returns an identifier without evaluating the variable it might point to.

sys:discard

sys:discard(...)

Sometimes only the side-effect of an element is needed, while ignoring the return values of the element.
Discard will evaluate its arguments, but avoid returning anything on the default channel.

sys:future

sys:future(...)

Evaluates the arguments asynchronously. Returns a future representing the first return value generated by
the arguments. All other arguments received on the default channel are ignored.

sys:futureIterator

sys:futureIterator(...)

Evaluates its arguments asynchronously. Returns a future iterator representing all values received on the

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

30 of 71 9/1/06 5:18 AM

default channel. The particular aspect of a future iterator is that it can only be iterated over once. Every time
a value is used from a future iterator, that value is removed. If access to the iterator values is needed more
than once, a list can safely be created with the values. However, the process of creating the list will force
synchronization with the thread that produced the values since the iterator is only closed when that thread
completes.

sys:each

sys:each(items)

Returns all elements in items as separate values. It is roughly equivalent to the following:

Element Definition Elements
sys:element

sys:element(name, arguments)

Allows the definition of an element. Evaluates the name and arguments arguments. It expects the name
argument to be an identifier, and arguments to be a list of identifiers. The scope of the definition is the
same as the scope of a variable that could be defined instead of the element. The arguments are a list of
mandatory arguments. Optional arguments can also be specified using the optional element. If the
element accepts arguments on the default channel, the ... identifier can be used in the argument list. Other
channels can be specified using the channel element. The rest of the arguments are not evaluated when the
definition takes place, but will be evaluated whenever the element is invoked.

The following example defines an element foo, which takes no arguments, and prints ’foo’ on the console:

In the following example, foo takes two arguments and prints them both on the screen:

Arguments on the default channel can be accessed using the ... identifier:

for(i, items, i)

element(foo, []
 print("foo")
)

foo()

element(foo, [one, two]
 print(one)
 print(two)
)

foo(1, 2)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

31 of 71 9/1/06 5:18 AM

Other channels can be used in a similar way:

Optional arguments can be assigned a default value using default:

Element can also be used to define anonymous elements. If the first argument evaluates to a list of
identifiers instead of an identifier, element considers that an anonymous element was instead desired,
defines the element, and returns the definition, which can later be used through executeElement:

Each definition of an element keeps a reference to the environment that was used at the time of the
definition. When evaluated, elements in the body of the definition will be resolved by first searching in the
local scope (eventually for elements defined by the execution of the body of this element) and, if not found,
in the environment that was used at the time of the definition. In the following example, the result will be the
printing of the string "a":

element(foo, [one, ...]
 print(one)
 for(i, ...
 print(i)
)
)

foo("one", 1, 2, 3, 4)

element(foo, [one, ..., channel(channelOne)]
 print(one)
 for(i, ..., print(i))
 for(i, channelOne, print(i))
)

foo("one", 1, 2, 3, 4, to(channelOne, 5, 6, 7, 8))

element(foo, [one, optional(two)]
 default(two, 2)
 print(one)
 print(two)
)

foo("one")
foo("one", two = "two")

set(foo,
 element([]
 print("Foo")
)
)

executeElement(foo)

element(foo, []
 element(a, [], print("a"))
 //return an anonymous element
 element([]
 a() //this is the a() defined above
)
)

set(b, foo())
element(a, [], print("b"))
executeElement(b)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

32 of 71 9/1/06 5:18 AM

This behaviour is particularly important when import and export are used.

Differences in XML:

The arguments list is a string of comma separated identifiers.

The XML version of element uses a different set of arguments. If an element accepts arguments on the
default channel, the vargs="true" attribute must be used. The arguments received on the default
channel will then be available in the body of the definition through the vargs identifier.

Optional arguments are indicated using the optargs attribute. The value must be a comma separated list of
identifiers.

In a similar way, the channels are specified using a comma separated list of identifiers and the channels
attribute.

sys:parallelElement

sys:parallelElement(name, arguments)

Like element, parallelElement also defines an element. However, elements defined using
parallelElement will evaluate their arguments in parallel with their bodies. All single value arguments
will automatically be futures, and all channels will automatically be future iterators. ParallelElement
can be used to define elements that process their arguments asynchronously.

<element name = "foo" arguments = "one" vargs = "true" channels = "channelOne">
 <print message = "{one}"/>
 <for name = "i" in = "{vargs}">
 <print message = "{i}"/>
 </for>
 <for name = "i" in = "{channelOne}">
 <print message = "{i}"/>
 </for>
</element>

<foo one = "one">
 <number>1</number>
 <number>2</number>
 <number>3</number>
 <number>4</number>
 <to name="channelOne">
 <number>5</number>
 <number>6</number>
 <number>7</number>
 <number>8</number>
 </to>
</foo>

<element name ="foo" arguments = "one" optargs = "two">
 <default name = "two" value = "2"/>
 <print message = "{one}"/>
 <print message = "{two}"/>
</element>

<foo one = "one"/>
<foo one = "one" two = "two"/>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

33 of 71 9/1/06 5:18 AM

Differences in XML:

The differences for the XML syntax from element also apply to parallelElement

sys:channel

sys:channel(...)

Used to specify channel arguments for an element. Quotes all arguments, such that identifiers are not
evaluated. Returns values that can be interpreted by element and parallelElement as representing
channels.

sys:optional

sys:optional(...)

Allows the specification of optional arguments for element definitions. Quotes all arguments and returns
values that can be interpreted by element and parallelElement as representing optional arguments.

sys:self

sys:self()

Self can be used to build recursive anonymous elements:

parallelElement(consumer, [...]
 for(i, ..., print("Received {i}")
)

element(producer, []
 for(i, range(0, 100)
 i
 print("Sent {i}")
 wait(delay = 100)
)
)

consumer(producer())

<parallelElement name = "consumer" vargs = "true">
 <for name = "i" in = "{vargs}">
 <print message = "Received {i}"/>
 </for>
</parallelElement>

<element name = "producer">
 <for name = "i">
 <range from = "0" to = "100"/>
 <variable>i</variable>
 <print message = "Sent {i}"/>
 <wait delay = "100"/>
 </for>
</element>

<consumer>
 <producer/>
</consumer>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

34 of 71 9/1/06 5:18 AM

Service Interaction Elements
sys:remote

sys:remote(host)

Uses the Karajan:Service that runs on the specified host to evaluate the rest of the arguments. The element
supports forwarding of the variable environment to the remote service [1], and returning values from the
service. Therefore the following code will work as expected:

A consequence is that if print is used remotely, the actual output is going to be automatically and
transparently forwarded (since it is merely a return value on a particular channel) to the execution instance
that initiated the remote execution.

It is also possible to use this feature recursively, such that a remote code snippet in turn delegates part of the
execution to other services.

Please note that the code inside remote might reference entities that are sensitive to the actual location of the
execution. In particular, the meaning of “localhost” if used with execute or transfer will not refer to the
machine where the execution originated.

Element resolution is performed separately when a script is submitted to a service. In other words,
import-ed files on the client side will be re-imported on the service side, if and only if they are system
libraries. If imports refer to user-defined libraries not part of the system libraries, the code defining the
libraries will be forwarded to the service, thus enabling the use of client-side user-defined elements on the
remote side. Similarly, in-line user defined elements are also available for use on the remote side:

List Manipulation Elements
list:list

list:list(*items, ...)

Constructs a list from values received on the default channel.

set(f
 element([x]
 if(x == 0 1 x*self(x - 1))
)
)

print(executeElement(f, 6))

set(a, 1)
set(b
 remote("https://somehost:1984", a+1)
)
print(b) //will print 2

element(foo, [], print("Foo"))
remote("https://somehost:1984"
 foo()
)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

35 of 71 9/1/06 5:18 AM

Alternatively the *items argument can be used to specify a a string with comma separated list of items.
This may be particularly convenient with the XML syntax.

list:append

list:append(list, *items, ...)

Appends all values received on the default channel to the list indicated by the list argument. Does not return
anything.

Alternatively, the *items argument could be used with a string of comma separated items.

list:prepend

list:prepend(list, ...)

Works like append with the exception that values are added to the beginning of the list. The order of the
values in the list will be the reverse of the order in which they are received by prepend:

will print [3, 2, 1, 4, 5, 6]

list:join

list:join(...)

Concatenates all lists received on the default channel and returns the resulting list.

list:size

list:size(list)

Returns the size of the list indicated by the list argument.

list:first

list:first(list)

Returns the first element in a list.

list:last

list:last(list)

Returns the last element in a list.

list:butFirst

list:butFirst(list)

set(l, list(4, 5, 6))
prepend(l, 1, 2, 3)
print(l)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

36 of 71 9/1/06 5:18 AM

Returns a list composed of all but the first element in the specified list.

list:butLast

list:butLast(list)

Returns a list containing all elements but the last from the specified list.

list:isEmpty

list:isEmpty(list)

Tests whether a list is empty. Returns true if the list is empty, and false otherwise.

Map Elements
map:map

map:map(...)

Returns a map with the entries received on the default channel. See entry.

map:entry

map:entry(key, value)

Allows the specification of an entry that can be used with map to construct a map.

map:put

map:put(map, ...)

Adds the entries received on the default channel to the specified map. Existing entries with the same key are
replaced. Does not return any value.

map:delete

map:delete(map, key)

Deletes the entry with the specified key from a map. Does not return a value.

map:get

map:get(map, key)

Returns the value corresponding to the specified key from a map.

map:size

map:size(map)

Returns the size of the map (the number of entries in the map).

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

37 of 71 9/1/06 5:18 AM

map:contains

map:contains(map, key)

Tests whether the map contains an entry with the specified key.

Logic Elements
Logic elements do not at this time use shortcut evaluation. They always evaluate all their arguments.

sys:and

sys:and(...)

Aliases: &

Returns the boolean and value of the arguments received on the default channel.

sys:or

sys:or(...)

Aliases: |

Returns the boolean or value of the arguments received on the default channel.

sys:not

sys:not(value)

Returns the boolean negation of the value in the value argument.

sys:equals

sys:equals(value1, value2)

Aliases: ==

Tests for the equality of two values. Makes a deep comparison of the arguments.

sys:true

sys:true()

Returns true.

sys:false

sys:false()

Returns false.

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

38 of 71 9/1/06 5:18 AM

Numeric Elements
math:sum

math:sum(...)

Aliases: +

Returns the sum of all the values received on the default channel.

math:product

math:product(...)

Aliases: *

Returns the product of all the values received on the default channel.

math:subtraction

math:subtraction(from, value)

Aliases: -

Returns the difference between the value specified by the from argument and the value indicated by the
value argument.

math:quotient

math:quotient(divisor, dividend)

Aliases: /

Divides divisor by dividend and returns the resulting value.

math:remainder

math:remainder(divisor , dividend)

Aliases: %

Returns the remainder of the division of divisor and dividend

math:square

math:square(value)

Returns the square of a number.

math:sqrt

math:sqrt(value)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

39 of 71 9/1/06 5:18 AM

Returns the square root of a number.

math:equalsNumeric

math:equalsNumeric(value1, value2)

Makes a numeric comparison of the values specified by the two arguments. A numeric comparison will try
to convert string values to numbers before the comparison is performed. Like equals, equalsNumeric
performs a deep comparison.

math:greaterThan

math:greaterThan(value1, value2)

Aliases: >

Returns true if value1 is strictly larger than value2

math:lessThan

math:lessThan(value1, value2)

Aliases: <

Returns true if value1 is strictly less than value2

math:greaterOrEqual

math:greaterOrEqual(value1, value2)

Aliases: >=

Returns true if value1 is larger than or equal to value2

math:lessOrEqual

equalsNumeric(1, "1") //true
equalsNumeric("2", "2.0") //true
equals("2", 2) //false
equalsNumeric([1, 2, "3"], ["1", "2", 3]) //true

<equalsNumeric value1 = "1">
 <number>1</number>
</equalsNumeric>
<equalsNumeric value1 = "2" value2 = "2.0"/>
<equals value1 = "2">
 <number>2</number>
</equals>
<equalsNumeric>
 <list items = "1, 2, 3"/>
 <list>
 <number>1</number>
 <number>2</number>
 <string>3</string>
 </list>
</equalsNumeric>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

40 of 71 9/1/06 5:18 AM

math:lessOrEqual(value1, value2)

Aliases: <=

Returns true if value2 is less than or equal to value2

math:min

math:min(...)

Returns the minimum of all numeric values on the default channel.

math:max

math:max(...)

Returns the maximum of all numeric values on the default channel.

math:int

math:int(value)

Returns the integer part of the argument, where “integer part” is to be understood in the mathematical sense
(also equivalent to the floor function).

math:ln

math:ln(value)

Returns the natural logarithm of the value argument.

math:exp

math:exp(value)

Returns e raised to the power of value.

math:random

math:random()

Returns a pseudo-random number in the interval [0,1) with a uniform distribution [2].

Error Handling Elements
sys:ignoreErrors

sys:ignoreErrors(*match)

Executes its arguments returning any values as they are received. If any of the arguments fails, the failure
will be matched against the regular expression in *match if present (otherwise it will be treated as .*). If
the match is successful, then the error will be ignored and the next argument will be executed. If the match

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

41 of 71 9/1/06 5:18 AM

fails, the error will be propagated.

sys:restartOnError

sys:restartOnError(match, times)

Evaluates its arguments in sequence. If a failure matching the regular expression in match occurs, all
arguments will be re-evaluated for a maximum of times indicated by the times argument.

sys:generateError

sys:generateError(error, *exception)

Allows the generation of an error. The message of the error is taken from the error argument.
*Exception is used in the current implementation to pass a Java exception to be attached to the error.

sys:onError

sys:onError(match)

OnError allows the definition of a custom error handler. Handlers defined with onError are valid for
anything executed within the scope of the parent of onError. Multiple handlers can be defined within the
same scope.

Whenever an error occurs within the scope of an error handler, the error will be matched against error
handlers starting with the inner-most handlers and ending with the outer-most handlers. If a handler matches,
it is invoked. When a handler is invoked it will evaluate all its arguments except for match in sequence. The
execution takes place in the context of the failing element. The following variables are defined automatically
to be used by the body of the error handler:

element
The element that caused the error. If the error is corrected by the handler, the execution of the element
can be re-started using executeElement.

error
The message of the error that occurred.

trace
A textual representation of the Karajan stack trace.

exception
In the current implementation exception can either contain a Java exception or the message “No
exception available”.

Error handlers are not re-entrant. If an unhandled error occurs within the body of the handler, the handler
will fail immediately.

String Elements
str:concat

str:concat(...)

Concatenates all arguments received on ... and returns the resulting string value.

str:split

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

42 of 71 9/1/06 5:18 AM

str:split(string, separator)

Returns a list obtained by splitting string in tokens separated by separator. The separator will not be
part of the tokens.

str:strip

str:strip(value)

Strips all leading and trailing whitespace characters from value.

str:matches

str:matches(string, regexp)

Returns true if string matches the regular expression specified by regexp, and false otherwise.

str:nl

str:nl()

Returns the new-line separator.

str:chr

str:chr(code)

Returns the character whose code is represented by code.

Miscellaneous Elements
sys:print

sys:print(message, *nl)

Returns the value in the message argument on the stdout channel. If the *nl argument is not present or
set to true, it appends a new line character to the message argument before returning it. The project
(root element) automatically prints all argument received on the stdout channel on the console.

sys:echo

sys:echo(message, *nl, *stream)

Immediately prints the value in the message argument to the console. If the *nl argument is not present or
set to true, it also prints a new line character. If the *stream argument is present, echo instead tries to
print the message on the specified output stream.

The difference between print and echo is that print does not rely on a side-effect to print values.
Therefore the evaluation of print cannot be distinguished from returning the value generated by print.

It is recommended that print be used instead of echo if possible.

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

43 of 71 9/1/06 5:18 AM

sys:checkpoint(*file, *automatic, *interval, *timestamped, *now)

sys:checkpoint

Allows the configuration of checkpointing. If the *now arguments is present and set to true, creates a
checkpoint of the state at the time of the evaluation of checkpoint, and writes it to the file indicated by the
*file argument.

The *automatic argument, if set to true, indicates that automatic checkpoints should be created at the
interval specified by the *interval argument (in seconds). If the *timestamped argument is also
present and set to true, the file names in which the checkpoint is saved will have a date and time appended
in the YYYYMMDDhhmm format.

sys:wait

sys:wait(*delay, *until)

When evaluated waits the number of milliseconds specified by the *delay argument or until the date in the
*until argument before completing.

sys:time

sys:time()

Evaluates all arguments and returns the total time elapsed, in milliseconds.

sys:file

sys:file:execute(file)

Aliases: executeFile

Parses and executes a file. The difference between import and file:execute is that file:execute
always parses and executes the file when evaluated, unlike import which only parses the file once.
File:execute can therefore be used to execute files which change over time, or to execute different files
based on a certain context.

sys:executeElement

sys:executeElement(element, args, ...)

Executes an element optionally passing the single value arguments indicated by the args argument, and the
... on the default channel. Args must be a map in which the keys are argument names and the values are
argument values. It is also possible to pass named arguments directly using the named form. However, this
does not allow passing of arguments named element or args.

set(t
 time(
 execute(executable="/bin/wait", arguments="10", ...)
)
)

print("Job done in ", t/1000, " seconds.")

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

44 of 71 9/1/06 5:18 AM

If args is not present, ... will be mapped to named arguments according to the rules in Argument
Mapping

sys:elementList

sys:elementList()

Returns a list containing the arguments to elementList but in non-evaluated form. The elements in the
resulting list can then be evaluated using executeElement

sys:cacheOn

sys:cacheOn(value)

Caches all return values of the rest of its arguments based on the value of the value argument. Subsequent
evaluations of this element in which the value argument will have the same value will not re-evaluate the rest
of the arguments, but return the cached values instead. The cache is bound to this static instance of the
cacheOn element. In other words, if another cacheOn element exists, it will not use the values cached by
this element, irrespective of the value of the value argument.

Caching is not guaranteed. It is a mechanism that could help improve performance, but it should not be
relied on to guarantee that certain elements are only evaluated once. Also, elements that rely on side-effects
to perform their function will not be able to perform those functions if their cached valued is used. Echo
will, for example, not do anything if cached. However, print will, because it does not rely on a side-effect
to print values to the console.

sys:numberFormat

sys:numberFormat(pattern, value)

Allows the formatting of a decimal number. The pattern argument indicates the pattern to be used for
formatting (as used by the java.text.DecimalFormat class). The value argument holds the
decimal value that is to be formatted.

In short, the following characters can be used in patterns:

Digit; zero not shown

0
Digit; zero is shown

.
Decimal separator

,
Grouping separator

E
Scientific notation separator

See also: http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html

sys:file

sys:file:contains(file, value)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

45 of 71 9/1/06 5:18 AM

Aliases: contains

File:contains determines whether a file contains a specific sequence of characters. The file
argument points to the file to be checked, while the value argument specifies the value to be searched.

sys:uid

sys:uid(*prefix, *suffix)

Returns a string with a unique ID. The *prefix and *suffix arguments can be used to specify a prefix
and a suffix respectively. In the current implementation, the uniqueness of the returned string is relative to
the instance of the interpreter.

sys:file

sys:file:read(name)

Aliases: readFile

File:read reads the contents of a file, pointed to by the name argument. This is intended for short text
files that may possibly hold things like error messages or exit codes. The file is completely read into
memory; therefore this element would not be suitable for manipulation of large files.

sys:file

sys:file:write(name, *append, ...)

File:write writes all arguments received on the default channel to the file with the given name. The file
is truncated first, unless the *append argument is true. When the element terminates, either successfully
or not, the file is closed.

sys:outputStream

sys:outputStream(type, *file)

Returns an output stream which can be used for writing values to. The type argument can be one of “stdout”,
“stderr”, or “file”. If the type is “file”, the *file argument must be present and indicate a valid file name.

sys:closeStream

sys:closeStream(stream)

Closes a stream opened with outputStream.

sys:sort

sys:sort(*descending, ...)

Returns all arguments in sorted order. The values are sorted in ascending order, unless the *descending
argument is set to true.

sys:dot

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

46 of 71 9/1/06 5:18 AM

sys:dot(...)

Returns the "dot product" of all the arguments, which are expected to be some form of vectors (lists or
channels). Dot returns the result asynchronously if any its arguments is a channel that is not closed. The
returned values are lists with a value extracted from each of the vectors.

sys:cross

sys:cross(...)

Returns the "cross product" of its vector arguments. Each value returned is a list with a value from each
vector. Cross does not work asynchronously.

sys:stats

sys:stats(*asmap)

If *asmap is false then it returns a string summarizing information such as the amount of used and free
memory, the number of CPUs, and the current number of active threads. If the *asmap argument is set to
true, it returns the information as a map with the following keys:

memused
heapsize
heapmax
cpucount
threadcount

sys:filter

sys:filter(*regexp, *invert, ...)

Filters arguments based on a regular expression, specified by *regexp. If *invert is true, matches will
be inverted (values that do not match are returned).

If only one argument is received on the default channel, and that argument is a list, a list is returned with the
values of the argument filtered.

If more than one argument is received on the default channel, each argument will be matched against
*regexp.

sys:info

sys:info(*prefix, *name)

Prints information (such as name and arguments) about elements. If the *prefix argument is present, it
will print information about all elements currently defined within that namespace prefix. If the *name
arguments is present it will only print information about the element with the given name. If none of the two
possible arguments are present, info will print information about all currently defined elements (within the
scope of info).

Notes

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

47 of 71 9/1/06 5:18 AM

1. At the time of this writing, futures are not properly forwarded if unbound at the time of the remote
invocation, possibly causing errors or the remote execution to hang indefinitely.
2. The uniform distribution relies in the current implementation on the properties of the Java
Math.random() function

Task Library
Files: task.k, task.xml

The task library interfaces with the Java CoG Kit abstraction classes, allowing the use of services for job
submission and file operations. The tasks in this library can function in two modes: scheduled or
unscheduled. When scheduled, remote tasks are not executed directly. They are rather passed to a scheduler
which can handle issues such as throttling, resource allocation, and task-to-resource mapping.

Task Elements
task:scheduler

task:scheduler(type, resources, handlers, *properties)

Defines the a scheduler to be used. A scheduler in Karajan has the role of managing resources and
assigning abstract tasks (such as execute and transfer) to concrete resources. More details about the
role of Karajan schedulers can be found in Karajan:The role of schedulers.

The type describes the particular type of scheduler that is desired. The resources that can be used by the
scheduler are passed in the resources argument and can be defined using resources. Each scheduler
will also require a list of task handlers, specified using handlers with the help of the handler element. Each
type a scheduler may support an optional set of properties. The *properties argument, if specified,
must be a map containing string keys and values.

The following schedulers are currently available:

Default The “default” scheduler uses a round-robin scheduling policy. However it also performs
lookahead matching. This means that if a certain host has reached its maximum allowable number of
tasks, it will be skipped. Also, if a suitable host is not found for the next task in the queue, other tasks
may be scheduled. The scheduler will use the handlers in the order they were specified in the
handlers list, with the first handler having the highest priority. The default scheduler supports the
following properties:
jobsPerCpu

Sets the maximum number of tasks that the scheduler will allocate for one CPU.
maxSimultaneousJobs

Sets the total maximum number of remote tasks that the scheduler will allow at any given time.
showTaskList

If set to true the scheduler will pop-up a window providing a lists of tasks that are being
executed, and additional task and memory statistics.

1.

Weighted The weighted scheduler is an experimental adaptive scheduler that maintains a "performance"
history of all the hosts that it manages. Each host starts with a score of 1. If a task fails on a host, its
score is decreased by a certain factor, if a task succeeds, the score is increased by a certain factor, and so
on. Scores are also temporarily decreased with each job running on a host. Periodically, a normalization
of the scores is performed. The normalization process involves multiplying each score with the same
factor such that the geometric average of the scores after the normalization is 1. The weighted scheduler
has two host selection strategies: "random" and "best". The "best" strategy means that the host with the

2.

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

48 of 71 9/1/06 5:18 AM

highest score at the time of the submission of a task will be chosen for that task. By contrast the
"random" strategy uses a weighted random choice, which gives higher chances for a host with a higher
score. With a weighted random policy, every host, assuming that scoreLowCap > 0, and given a
sufficiently large number of tasks, will eventually get a chance to be used (and thus possibly increase its
score). The following properties are available for the weighted scheduler (default values are listed in
parentheses, after the property name; factors are values with which the score for a host is multiplied in a
certain event):
connectionRefusedFactor

(0.1) factor for connection refused exceptions while submitting to a host
connectionTimeoutFactor

(0.05) factor for connection timeout expcetions while submitting to a host
jobSubmissionTaskLoadFactor

(0.9) used when a job is submitted successfully; reversed when the job completes (either
successfully or in failure)

transferTaskLoadFactor
(0.9) used when a task transfer is started; reversed when the transfer completes

fileOperationTaskLoadFactor
(0.95) used when a file operation is started; reversed when the operation completes

successFactor
(1.2) factor used upon successful completion of a task

failureFactor
(0.9) used when a task fails

scoreHighCap
(100) maximum value for a score

scoreLowCap
(0.001) minimum value for a score

renormalizationDelay
(100) number of tasks submitted after which a normalization occurs

policy
("random") use either a weighted "random" host selection policy or a "best" score host selection
policy.

The scope of the scheduler is similar to a deeply accessible variable. In fact, the current implementation
works by setting a hidden variable (named "#scheduler") in the current scope, and which would be visible in
any dynamic sub-scope.

The following example shows a typical scheduler definition:

import("sys.k")
import("task.k")

scheduler("default"
 resources(
 host("host1", cpus = 256
 service("execution", provider = "gt2", jobManager = "PBS", uri = "host1.example.net:2119")
 service("file", provider = "gsiftp", uri = "host1.example.net:2911")
)
 host("host2", cpus = 2
 service("execution", provider = "gt2", uri = "host2.example.net:2119")
 service("file", provider = "gsiftp", uri = "host2.example.net:2911")
)
)

 handlers = list(
 handler("execution", "gt2")
 handler("execution", "gt4")
 handler("file", "gsiftp")
 handler("file-transfer", "ssh")
)

 properties = map(
 entry("jobsPerCpu", "1")
)
)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

49 of 71 9/1/06 5:18 AM

Or in XML:

task:handler

task:handler(type, provider)

A handler specifies a Java CoG Kit Abstraction handler. A handler is used to submit tasks. Type indicates the
type of handler. They type is string and can have one of the following values: “execution”, “file”, and
“file-transfer”.

Execution handlers are used for submitting jobs. File handlers are used for file operations (such as renaming,
deleting, and listing of files). File transfer handlers are used only for transferring files. It is possible to
transfer files using file handlers, but it is not possible to delete a file using a file transfer handler.

The provider argument indicates the provider to be used for the handler. For a list of currently supported
providers please see the abstractions guide.

task:resources

task:resources(...)

Encapsulates a set of hosts which can be specified using host.

task:host

task:host(name , *cpus , ...)

Returns a host definition. The name argument indicates the host name or IP address. The number of CPUs of
the host can be specified using the *cpus argument. A set of services can also be specified on the default
channel.

<import file="sys.xml"/>
<import file="task.xml"/>

<scheduler type = "default">
 <resources>
 <host name="host1" cpus="256">
 <service type="execution" provider="gt2" jobManager="PBS"
 uri = "host1.example.net:2119"/>
 <service type="file" provider="gsiftp" uri="host1.example.net:2911"/>
 </host>
 <host name="host2" cpus="2">
 <service type="execution" provider="gt2" uri="host2.example.net:2119"/>
 <service type="file" provider="gsiftp" uri="host2.example.net:2911"/>
 </host>
 </resources>

 <argument name="handlers">
 <list>
 <handler type="execution" provider="gt2"/>
 <handler type="execution" provider="gt4"/>
 <handler type="file" provider="gsiftp"/>
 <handler type="file-transfer" provider="ssh"/>
 </list>
 </argument>

 <argument name="properties">
 <map>
 <entry key="jobsPerCpu" value="1"/>
 </map>
 </argument>
</scheduler>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

50 of 71 9/1/06 5:18 AM

task:service

task:service(type, provider, *uri, *project, *jobManager, *securityContext)

Returns a service definition. The type of the service can be one of “execution”, “file”, or “file-transfer”.
Provider indicates The Java CoG Kit abstraction provider for the service. For a list of currently supported
providers please see the abstractions guide.

The *uri argument can be used to specify a URI for the service. If missing the host name of the host
containing the service will be used.

The *project argument can be used to automatically bind a queuing system project to the service in order
to alleviate the need to do it with the execute element.

The *jobManager argument can be used to specify a job manager different from the default. Examples of
job managers include Fork, PBS, and Condor.

A non-default security context can be specified using the *securityContext argument.

task:securityContext

task:securityContext(provider, credentials)

Returns a Java CoG Kit abstraction security context. The returned context will be instantiated for the
specified provider. The credentials argument can be used to pass a specific set of credentials to security
context.

task:allocateHost

task:allocateHost(name)

Allows tasks to be grouped on one host. By default, the scheduler assigns a different host to each task.
AllocateHost can be used to reserve a host from the scheduler until it completes. The name indicates
the name of the variable to be set with the allocated host, and is automatically quoted.

Or, in XML:

//Define a scheduler
scheduler(
 ...
)

allocateHost(host1
 execute("/bin/date", stdout="date", host=host1)
 transfer(srcfile="date", srchost=host1, desthost="localhost")
)

<scheduler>
 ...
</scheduler>

<allocateHost name="host1">
 <execute executable="/bin/date" stdout="date" host="{host1}"/>
 <transfer srcfile="date" srchost="{host1}" desthost="localhost"/>
</allocateHost>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

51 of 71 9/1/06 5:18 AM

The default scheduler uses a late binding mechanism with allocateHost. It generates a virtual host that
is only bound to an actual host when the first task using it is submitted to the scheduler. This removes the
limitation on the number of parallel allocateHost that can be running, and allows contained jobs to be
submitted to the scheduler, which will later handle the throttling issues.

Multiple allocateHost can be nested allowing the grouping of tasks on multiple dependent hosts.

task:host

task:host(host, type, provider)

Checks if a host, specified with the host element contains a service of the specified type and with the
specified provider. Returns true if such a service exists, and false otherwise.

task:execute

task:execute(executable, arguments, *directory, *stdout, *stderr, *stdin,
*redirect, *provider, *host, *count, *jobtype, *maxtime, *maxwalltime,
*maxcputime, *environment, *queue, *project, *minmemory, *maxmemory,
*nativespec, *delegation)

Executes a remote job. Executable indicates the executable to be run. Arguments can be passed to the
executable using arguments. If present, the *directory argument specifies the remote directory in
which the job will be executed. *Stdout and *stderr allow the redirection of the output and error
streams to a remote file. *Stdin allows the redirection of the standard input from a remote file. If
*redirect is set to true the standard output and standard error of the remote job is redirected to the
local console. The *host argument allows the job to be executed on a specific host, and the *provider
argument allows the job to be executed using a specific provider.

The *delegation can be used to enable credential delegation with providers which support it. Credential
delegation is disabled by default.

The rest of the arguments are passed to the underlying provider.

A native specification (such as a classic GRAM RSL, or WS-GRAM RSL) can be passed to the provider using
the *nativespec argument.

task:transfer

task:transfer(*srcfile, *srcdir, *srchost, *destfile, *destdir, *desthost,
*provider, *srcprovider, *destprovider, *thirdparty, *srcOffset, *length,
*destOffset)

Transfers a file. The file can be transfered between the local machine and a remote machine, or between two
remote machines. The name of the source file is specified by the *srcfile argument. If present,
*destfile specifies the name of the target file, otherwise the source file name is used.

The *srcdir argument indicates the directory on the source machine where the source file can be found.
If the *srcdir argument is missing, the default directory will be assumed (provider dependent).

The *destdir argument indicates the directory on the target machine where the file will be copied. If the
*destdir argument is missing, the default directory will be assumed (provider dependent).

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

52 of 71 9/1/06 5:18 AM

*Srchost and *desthost indicate the source and the target machines respectively, while the
*provider argument can be used to force the scheduler to use a specific provider, or in the event a
scheduler is not used. If the source and the destination use distinct providers, the *srcprovider and
*destprovider arguments can be used.

The *thirdparty can be used to indicate that a direct transfer between two machines, none of which are
the local host, is requested. At this time, only GridFTP supports third party transfers. By default, the Java
CoG Kit Abstractions will use simulated third party transfers (routed through the local host) even if both the
source and destination are different from the local host.

Partial transfers can be achieved using *srcOffset, *length, and *destOffset. Currently these
are only supported with GridFTP 3rd party transfers.

task:file:list

task:file:list(dir, *host, *provider)

Returns a list of files in a directory specified by dir, on the *host machine. The *provider argument
can be used to select a specific provider for the operation. *Provider defaults to the local provider.

task:file:remove

task:file:remove(name, *host, *provider)

Removes a file specified by name, on the *host machine. The *provider argument can be used to
select a specific provider for the operation. *Provider defaults to the local provider.

task:file:exists

task:file:exists(name, *host, *provider)

Returns true if the file specified by name exists on the *host machine. The *provider argument can
be used to select a specific provider for the operation. *Provider defaults to the local provider.

task:dir:make

task:dir:make(name, *host, *provider)

Creates a directory specified by name, on the *host machine. The *provider argument can be used to
select a specific provider for the operation. *Provider defaults to the local provider.

task:dir:remove

task:dir:remove(name, *host, *provider)

Removes an empty directory.

task:file:isDirectory

task:file:isDirectory(name, host, provider)

Returns true if the file specified by name exists on the *host machine and it is a directory. The

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

53 of 71 9/1/06 5:18 AM

*provider argument can be used to select a specific provider for the operation. *Provider defaults to
the local provider.

task:file:chmod

task:file:chmod(name, mode, *host, *)

Changes the permissions on the file specified with the name argument to the mode string indicated by the
mode argument. If *host and *provider are present, the operation is done remotely using the
respective provider.

task:file:rename

task:file:rename(from, to, *host, *provider)

Renames a file. The source and target name are specified using the from and to arguments. If *host and
*provider are present, the operation is done remotely.

task:SSHSecurityContext

task:SSHSecurityContext(credentials)

Instantiates a SSH security context. This is simply a convenience function for
securityContext(”ssh”, credentials).

task:InteractiveSSHSecurityContext

task:InteractiveSSHSecurityContext(*username, *privateKey, *nogui)

Instantiates a SSH security context which will lazily display a dialog window allowing the user to input a
user-name/password pair or a user-name/private key/passphrase set. The dialog will only be displayed once
per each instance of an interactive SSH security context.

If *username and/or *privateKey are specified, the values are used to pre-fill the corresponding
dialog fields.

The InteractiveSSHSecurityContext makes use of a class present in the SSH provider of the Java
CoG Kit. This class will try to determine whether a GUI can be displayed or not (by checking
GraphicsEnvironment.isHeadless()). If a Swing dialog cannot be displayed, a text-mode
interface is used instead. The *nogui argument can be used to force the use of the text-mode interface (by
setting it to true).

task:passwordAuthentication

task:passwordAuthentication(username, password)

Returns a username/password pair suitable to be used as a credential for a securityContext.

task:publicKeyAuthentication

task:publicKeyAuthentication(username, privatekey, passphrase)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

54 of 71 9/1/06 5:18 AM

Returns a username/privatekey/passphrase set which can be used as credentials for
securityContext. The privatekey argument must point to a file containing the private key.

Java Library
Files: java.k, java.xml

The Java library allows limited interfacing with Java classes and objects from Karajan.

Java Elements
java:new

java:new(classname, *types, ...)

Instantiates a new Java object and returns it. Classname represents the fully qualified name of the class.
The *types argument is a list of fully qualified class names used to search for a constructor. The
arguments on the default channel are passed to the constructor after performing a conversion based on the
*types argument. The *types argument is not always necessary, but should be used if Karajan cannot
determine the types of the arguments that need to be passed to the constructor.

Primitive Java types are represented by their corresponding keywords: boolean, byte, char, int,
long, float, and double.

java:invokeMethod

java:invokeMethod(method, *static, *classname, *object, *types, ...)

Invokes a method on a Java object or a static method on a Java class. The invocation is static if *static is
set to true or *classname is present. Otherwise the value of *object is taken to be a Java object and
the invocation is done on a virtual method of the object. Method indicates the name of the method. Unless
the *types argument is present, Karajan will try to determine the method signature from the types of
A method is searched for in the inheritance hierarchy of the object. If one is found, the method is invoked
and, if its return value is not void the returned value is returned on the default channel. The format of the
type argument is identical to the one for new.

set(x
 new("java.lang.Double", "1.0")
 /* The types argument is not necessary since
 * the string argument is automatically mapped
 * to java.lang.String
 */
)

set(j
 new("java.lang.Integer", types = ["int"], 1)
 /* The types argument is required since the numeric
 * type used by Karajan cannot be mapped automatically
 * to a specific Java numeric type.
 */
)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

55 of 71 9/1/06 5:18 AM

java:executeMain

java:executeMain(class, ...)

Invokes static void main(String[] args) on a class. The qualified class name should be
passed in the class argument. The arguments on the default channel are converted to strings and passed as
the args to the main method.

java:getField

java:getField(field, *object, *classname)

Returns the value of a field from an object or class. The filed name is passed in field. If *object is
present, the value of the instance field of the object is retrieved. If *classname is present, the class field
(static field) of the specified class is retrieved. Arguments *object and *classname are mutually
exclusive.

java:waitForEvent

java:waitForEvent(...)

WaitForEvent is a rather obscure and incomplete element. It waits for a Java event such as a button
being pressed, or a window being closed. Each argument is a list composed by three elements:

A return value which will be returned when the associated event occurs
The type of the event to wait for. Currently the following types are supported:

java.awt.events.ActionEvent
Can be used to wait for a button being pressed (or any other actions that have a
addActionListener(java.awt.events.ActionListener) method.

java.awt.events.WindowEvent
Can be used to listen for the windowClosing notification on a window.

The source object to be used

When the event occurs, waitForEvent completes returning the return value specified as the first item in
the list corresponding to the event that the list represents.

java:classOf

java:classOf(object)

Returns the Java class name of the specified object.

java:null

java:null()

Karajan has no explicit null value. However, it may be necessary that a null value be used when
invoking Java methods. Null provides that.

HTML Library

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

56 of 71 9/1/06 5:18 AM

Files: html.k, html.xml

The HTML library can be used to produce HTML output from Karajan scripts. It is incomplete, but able to
generate simple HTML pages. It is listed here in the hope that it will be useful. However, not many
guarantees are made about it. The library elements utilize the html channel.

test jump to html:write write

HTML Elements
html:write

html:write(file, html)

Writes all arguments received on the html channel to the specified file. It is roughly equivalent to the
following:

The following code produces a simple HTML file:

The XML syntax may appear more convenient for using the HTML library:

html:quickstart

html:quickstart(title, html)

Produces an HTML skeleton output with the given title, and the arguments on the html channel substituted

file:write(name=file
 from(html
 ...
)
)

import("html.k")
write(file="out.html"
 html(
 head(
 title("Title")
)
 body(
 h1("Heading 1")
 text("Some text")
)
)
)

<import name="html.xml"/>
<write file="out.html">
 <html>
 <head>
 <title>Title</title>
 </head>
 <body>
 <h1>Heading 1</h1>
 <text>Some text</text>
 </body>
 </html>
</write>

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

57 of 71 9/1/06 5:18 AM

inside the <body> tag.

html:html

html:html(html)

Generates the <html></html> tag pairs with the html arguments substituted inside.

html:head

html:head(html)

html:title

html:title(title)

html:body

html:body(*bgcolor, html)

html:table

html:table(*width, *height, *border, *cellpadding, *rules, *bgcolor, *class,
*style, html)

html:tr

html:tr(*width, *height, html)

html:td

html:td(text, *width, *height, *colspan, *bgcolor, *align, *valign, html)

A note that needs to be made about td is that the text argument is mandatory, which means that it needs to
always be present, even if a HTML nested element is used. The following example shows the correct usage
for a table cell containing just an image:

or

...
table(
 ...
 tr(
 td("", {[el|html|img}}(src="image.jpg"))
)
 ...
)
...

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

58 of 71 9/1/06 5:18 AM

html:th

html:th(text, *width, *height, *colspan, html)

See also: td

html:h1

html:h1(text, html)

html:h2

html:h2(text, html)

html:h3

html:h3(text, html)

html:h4

html:h4(text, html)

html:h5

html:h5(text, html)

html:h6

html:h6(text, html)

html:ul

html:ul(html)

html:pre

html:pre(text , html)

html:br

...
<table>
 ...
 <tr>
 <td text="">

 </td>
 </tr>
 ...
</table>
...

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

59 of 71 9/1/06 5:18 AM

html:br()

html:li

html:li()

html:a

html:a(text, *href, *style, html)

html:anchor

html:anchor(name)

Anchor is used to define a HTML anchor since the a element does not support this functionality. It
effectively returns on the html channel.

html:img

html:img(src, *border)

html:text

html:text(text)

Returns the value of the text argument on the html channel.

Forms Library
Concepts
Files: forms.k, forms.xml

The forms library can be used to build and gather information from GUI forms. The current implementation
uses the Java Swing library.

Component ID

Each component whose state is user-modifiable (such as button, textField, etc.) must have an ID, which can
be used to retrieve the state of the component when using the form element.

Component Layout

The layout of components is done using hbox and vbox.

Component Alignment

Components support alignment using the *halign and *valign arguments. *Halign and *valign
have values between 0.0 and 1.0, with 0.0 representing left/top alignment, and 1.0 representing right/bottom
alignment. By default, both *halign and *valign are set to 0.5 (centered).

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

60 of 71 9/1/06 5:18 AM

Form Elements
form:form

form:form(id, title, waiton)

This element represents the main form element. It creates a window based on the specification received in
..., and displays it. It will then wait for a control with the id that matches the waiton value, and
terminates returning a map pairing control ids and their values. The layout of the controls in the window is
performed by recursive nesting of vertical and horizontal containers (vbox and hbox respectively).

form:hbox

form:hbox(*homogeneous, ...)

Represents a horizontal container. All controls specified by ... are laid out one after another horizontally.
By default, all controls are assigned an area of equal height, but the width varies according to the natural
dimensions of the control (the total width is proportionally divided between the components according to
their size). The *homogenous argument can be used to force all cells to have an equal width. The various
possibilities are illustrated in Figure 1, Figure 2, and Figure 3.

Figure 1: A non-homogenous hbox

Figure 2: A scaled non-homogenous hbox

Figure 3: A homogenous hbox

form:vbox

form:vbox(*homogenous, ...)

A vbox is similar to a hbox but with the sub-components laid vertically.

form:label

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

61 of 71 9/1/06 5:18 AM

form:label(text, *halign, *align)

Represents a text label. The text content is described by the text argument.

See also: Component Alignment

form:button

form:button(id, caption, *halign, *valign)

Represents a push-button. The text used for the label is specified with the caption argument. The ID is
specified with the id argument.

See also: Component Alignment

form:checkBox

form:checkBox(id, *caption, *checked, *halign , *valign)

Constructs a check-box, whose initial state can be set using the *checked argument. By default, the
check-box is not checked. The label of the checkbox is specified using the caption argument.

See also: Component Alignment

form:radioBox

form:radioBox(id, caption, ...)

Allows the construction of a radio-button group. The group will have a titled border with the text defined by
the caption argument. RadioBox expects radio button definitions on the default channel (...).

form:radioButton

form:radioButton(id, caption, *selected, *halign, *valign)

Defines a radio button, with the text set by the caption argument. By default, the first button in a
radioBox is selected, unless the *selected argument is used on a different radio button.

See also: Component Alignment

form:textField

form:textField(id, *columns, *halign, *valign)

Describes a text field, used for text input. A text field has only one line of text. The number of columns of
the text field is indicated using the *columns argument.

See also: Component Alignment

form:passwordField

form:passwordField(id, *columns, *halign, *valign)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

62 of 71 9/1/06 5:18 AM

A passwordField is similar to a textField, with the difference that the characters entered are visually
represented by asterisks (*).

See also: textField

form:comboBox

form:comboBox(id, *halign, *valign, ...)

Constructs a combo-box, which can be used to select from multiple items in a drop-down list. The items are
specified as ..., using comboItem.

See also: Component Alignment

form:comboItem

form:comboItem(*text, *selected)

Specifies a comboBox item. The text of the item is indicated by the text argument. By default, the first
item in a comboBox is selected, unless the *selected argument is used on a different item.

form:HSeparator

form:HSeparator()

Constructs a horizontal separator component.

form:VSeparator

form:VSeparator()

Constructs a vertical separator component.

form:filler

form:filler(*width, *height)

Defines a filler component. A filler component serves no functional purpose, but can be used to influence
the layout of a form by providing a visually invisible component of the specified *width and *height
(in pixels).

form:messageDialog

form:messageDialog(message, title)

Used to display a popup window displaying the specified message and having the specified title. The
element completes when the popup message is closed by the user, either by using the window controls or the
OK button.

Restart Library

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

63 of 71 9/1/06 5:18 AM

The Restart Log Library provides fault tolerance in a style similar to that of Condor DAGMan. The
execution of certain operations is recorded into a log file on the disk. In case of a failure the execution can
be resumed using the information saved in the log file. The operations that previously completed
successfully will not be re-executed. The library defines two elements: restartLog and logged.

This mechanism offers no guarantees of semantic consistency after a restart if the control flow is influenced
by factors that change between the original execution and the resumed execution. It is generally safe to use
this mechanism with for and parallelFor if the iteration values are fixed. Additionally, return values
of logged elements are not recorded. Consequently a resumed logged element will not return anything.

Usage example:

Resuming:

rlog:restartLog
rlog:restartLog(*resume, *name, restartlog)

RestartLog performs the following functions:

Opens a log file. The prefix of the log file name is taken from the *name argument or, if the *name
argument is missing, from the file name of the current script being executed. The actual file name is
obtained by appending a dot character ("."), a unique numeric identifier, and the ".rlog" extension.
RestartLog will attempt to successively use increasing numeric identifiers, starting from 0 (zero). If
a log file with that identifier already exists or if an exclusive lock on the file cannot be obtained, the
next number is used. An exclusive lock is acquired on the log file such that other processes will not
attempt to use the same file.

1.

Accepts arguments on the restartlog channel and writes them to the log file. After writing each
value, the file buffers are immediately flushed to the disk using the FileDescriptor.sync()
(http://java.sun.com/j2se/1.4.2/docs/api/java/io/FileDescriptor.html#sync()) method.

1.

In the case of a restart it also parses a previous log and builds the necessary data in a way that the 1.

import("sys.k")
import("task.k")
import("rlog.k")

logged(
 transfer(srcfile="a.txt", desthost="host.example.org", provider="gt2")
)

parallel(
 logged(
 execute(executable="/bin/cat", arguments="a.txt", stdout="b.txt",
 host="host.example.org", provider="gt2")
)
 logged(
 execute(executable="/bin/cat", arguments="a.txt", stdout="c.txt",
 host="host.example.org", provider="gt2")
)
)

parallelFor(out, list("b.txt", "c.txt")
 logged(
 transfer(srcfile=out, srchost="host.example.org", provider="gt2")
)
)

cog-workflow workflow.k -rlog:resume=workflow.0.rlog

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

64 of 71 9/1/06 5:18 AM

logged elements can use. If during a restart restartLog cannot acquire an exclusive lock on the
log file, it will not attempt to use another log file, but fail instead.

Upon successful completion, it closes and deletes the log file.1.

Restarts can be triggered in two ways:

Using the *resume argument with the full file name of a log file1.

By specifying the -rlog:resume=<logname> command line argument to the script (not to the
interpreter).

1.

rlog:logged
rlog:logged()

Logged elements execute their child elements and, upon termination, they return, on the restartlog
channel an identifier that uniquely identifies a logged element within a given execution, and a thread id,
which is used to differentiate between concurrent runs of the same element. The same (element id; thread id)
pair can occur multiple times in a log file, but it only reflects successive executions of an element within the
same thread.

If a restart is in effect, logged elements will analyze data parsed from the log, and if there exists an entry
with the same (element id; thread id) pair which has a count larger than 0, the count will be decreased and
logged will complete without executing its arguments/child elements. It will consequently not return any
values whatsoever, not even values that were returned by its child elements in a previous run. It is therefore
recommended that logged only wrap elements that do not return values.

Service
Karajan features a service which can be used to execute parts of a script remotely. Some of the features of
the service are listed below:

Security
The service and client use GSI security enabling strong authentication and encryption of data

Configurable communication channels
The Karajan networking infrastructure consists of configurable communication sub-systems, which
separate the high level messaging protocols from the low level implementation details. The current
implementation uses SSL sockets over TCP/IP, and can be configured to use persistent connections, or
callbacks, or polling (or a combination of them), and the configurations can be different for each host
or for a specific domain. This provides firewall transparency when needed, yet can minimize resource
consumption and maximize performance when firewalls are not involved.

Semantic transparency
Remote execution can be seamlessly integrated with local execution, while preserving most of the
system semantics, such as return values, definitions, etc.

Using the Service
The Karajan service can be accessed from Karajan scripts using the remote element.

Shared or Personal

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

65 of 71 9/1/06 5:18 AM

The Karajan service can be used in two modes: personal or shared. In personal mode, the service runs under
a user’s credential, loaded from a proxy certificate. It is therefore necessary that a valid proxy exists before
the service is started in personal mode. In this mode, all libraries are available for use without restrictions,
but the connections are limited to clients using the same credential as the one used for starting the service.

In shared mode, the service requires a host credential. In this mode, connections can be initiated by multiple
users, and authorization is performed based on a grid-map file. Access to certain libraries or functions that
could be used to access files, resources, or other information belonging to other users using the service are
restricted. Any attempt to execute such functions will result in the execution failing. The following list
enumerates libraries and elements whose use is restricted in shared mode:

The Java Library
Elements not in the Task Library which can be used to access local files: file:contains,
file:read, outputStream, closeStream, checkpoint, file:execute, and
file:write.

In addition, the Task Library requires a special local provider, which can use operating system services to
execute local tasks under non-shared privilege, achieved through grid-mapfile mapping. The service will
refuse to run in shared mode if the normal local provider is detected. Details about building and configuring
the secure local provider are available In the Service section.

When running in shared mode the service should be started under a non-priviledged account. Please do not
run the service from the root account or any other administrative/priviledged account!

Limiting Access to Resources in Shared Mode
Using the service in shared mode has a number of security requirements:

Access to resources should be restricted based on user identities.
A user must not be able to access any other user’s data/resources. Consequently, this requirement is
divided into:

Restricting access to the shared environment, such that privilege escalation cannot be done in order
to override any of the security measures in place

1.

Delegating certain required privileged operations (such as execution and file access) to local
security domains (running privileged operations under specific user accounts)

2.

Access restriction is achieved using a ”all-or-nothing” access control list: the grid-mapfile. A given identity
(materialized in a GSI/X509 certificate) is only able to use the service if there exists an entry for that identity
in the grid-mapfile.

Shared environment access restrictions is done in two ways: [1]

Execution of Karajan elements that could be used for escalating privileges or accessing other users’
data/resources is prohibited. Attempts to use these will result in an error instead. For example, allowing
arbitrary Java method invocations inside the shared interpreter environment (the service JVM) is
prohibited. Similarly, elements that can be used to access files belonging to the account under which the
shared interpreter is running is also prohibited, and their use will result in an error.

1.

Instantiation of arbitrary Java objects, regardless of the means, is restricted to known “safe” object types.
A subset of the problem is presented below:

2.

The Karajan service allows passing various arguments from the client to the service by means of serialization
and de-serialization. However this process does not guarantee the invariance of all objects when copied to a
different resource. It is possible, that a certain object exists within the libraries of both the client and the
service, which could, through the simple process of de-serialization, be initialized with privileged data,

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

66 of 71 9/1/06 5:18 AM

which can later be retrieved through other means. For example, let us consider the following Java class:

The transfer of an instance of Foo from the client to the service, by means of serialization/de-serialization
will not preserve the local meaning of the file attribute. Instead, the mere instantiation of Foo combined with
a seemingly unprivileged operation (print(”foo is {foo}”)) could allow access to arbitrary files in
the service shared environment.

Another possible scenario is objects whose constructors implement side effects that execute privileged
operations. Another Foo, should illustrate this:

It is clear that de-serializing an instance of the latter Foo in the service environment is undesirable, to say the
least. Surely, both Foo versions are somewhat extreme, and somewhat unlikely to exist in the libraries of
both the client and the service, but there is no certainty, and auditing all classes in the libraries would be very
tedious if at all possible. The chosen solution to the problem is to have a set of allowed classes/packages
which can be safely migrated between client and server, while excluding anything that is not explicitly in the
set. A configuration file (etc/karajan-restricted-classes.properties) defines the
de-serialization policies. The file allows two types of entries:

package.allow
Define a package which is allowed. All classes in the specified package and all its sub-packages are
considered safe to be de-serialized.

class.disallow
Explicitly disallow a class from being de-serialized, even if it is contained in an allowed package.

Communication Layer Configuration
The communication layer supports three basic modes of operation, described below:

Persistent
In this mode, connections are kept open for as long as needed. All client→server and server→client
communications will re-use the same connection, even if multiple requests are sent concurrently from
the client. It is also possible to keep connections open after all current communications have terminated,
in the event that future communications will be needed. This mode can be safely used if the client is
behind a firewall, but it may keep resources allocated unnecessarily if no communication happens
between the server and the client.

Callback

public class Foo implements Serializable {
 private File file;
 private transient String contents;

 public Foo(File file) {
 this.file = file;
 this.contents = read contents of file
 }

 public String toString() {
 return contents;
 }
}

public class Foo implements Serializable {
 public Foo() {
 something that amounts to "rm -rf /"
 }
}

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

67 of 71 9/1/06 5:18 AM

The callback mode can be used to instruct the service to initiate a connection to the client if the service
needs to send any messages to the client. This type of configuration will most likely not work if a client
is behind a firewall.

Polling
Polling is somewhat similar to persistent connections in that it will safely work if the client is behind a
firewall. It instructs the client to disconnect idle connections, but re-establish them at specific intervals. It
is therefore more conservative in terms of resource usage, but it may cause unwanted delays.

These modes of operation can be combined. For example, a combination between using callbacks and
polling will ensure that the system will work whether the client is behind a firewall or not, but it will provide
better performance in the best case scenario (no firewall).

The communication layer is conservative, in the sense that before a connection is initiated, it will try to
search for any other existing connection that can be used to transmit a certain bit of information, irrespective
of the initiator of the connection, and only if such a search fails, will it consider establishing a new
connection.

The configuration can be changed by editing etc/remote.properties. The file contains a set of pairs
of domain expressions and connection properties. The entries are considered in the reverse order from that
in which they appear in the file. In other words, the first entry will be considered last, only if no other
matching entry can be found. The domain expression is a regular expression which is matched against the
domain name of the service host. The connection properties are a set of comma separated options. These
options are described in the following table:

keepalive(timeout)
Indicates that the connection is to be kept alive. The optional timeout indicates that the connection
should be also kept alive for the specified number of seconds, even if no actual data is sent through.

reconnect
This option instructs the system to re-initiate a connection in the event that a connection loss occurs. By
default, failed connections will not be re-established.

callback
Instructs services to connect to the client if no existing connection can be used for sending data. A client
will have started a local service before the first connection with the service for which a callback
configuration exists is established.

poll(interval)
Instructs the client to poll the service for updates. The service will buffer all data that it needs to send to
the client, and commit the buffered data when the client initiates a polling run. The interval indicates, in
seconds, the interval at which the client should initiate the polls.

An example configuration is listed below:

#default to persistent connections
#this one is reached if no other entry matches
".*" keepalive(120), reconnect

#callbacks can safely be used within our own domain
".*mydomain.com" callback

#there's a firewall between mydomain.com and otherdomain.com, so
#we poll every 2 minutes
".*otherdomain.com" poll(120)

#for the sake of this example, a combination of callback and polling
#if callbacks don't work, polling will pick things up
".*thirddomain.org" callback, poll(120)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

68 of 71 9/1/06 5:18 AM

The Secure (Grid-Mapped) Local Provider
Pre-built Packages

Binary packages for the secure local provider are available in the following formats: [.tar.gz
(http://www.cogkit.org/release/4_1_4/cog-4_1_4-provider-slocal-bin.tar.gz|)] [.zp
(http://www.cogkit.org/release/4_1_4/cog-4_1_4-provider-slocal-bin.zip|)]

Simply unpack either one of them in the cog-4_1_4 directory, overwriting any exiting files.

Building From Source

In order to build the secure local provider, the following steps must be taken:

If a previous build was performed, run ant distclean
Edit the abstractions dependency file in cog/modules/abstraction/dependencies.xml
Change the dependency on the provider-local to provider-slocal:

Re-compile with ant dist

At this time, the secure local provider only implements job execution (execute). File operations are not
yet implemented.

The secure local provider uses a gridmap file, which describes a maping of GSS distinguished names to local
user accounts. For details about gridmap files, take a look at Specifying Identity Mapping Information
(http://globus.org/toolkit/docs/4.0/admin/docbook/ch05.html#id2516656)

The actual mapping is done using sudo and a simple job wrapper. Sudo must be configured to allow the
execution of the wrapper under target user accounts without a password. An example sudo configuration is
shown below:

Where <shared_username> is the username of the account under which the shared service is running,
<target_usernames_list> is a comma separated list of user-names which the provider can map to
(these must also be correctly configured in the gridmap file), and <cog_path> is the absolute path to the
CoG/Karajan installation.

If the target user account is the same as the shared user account, the secure local provider can be configured
to bypass sudo (which it does by default).

The provider configuration file (etc/provider-slocal.properties), supports the following
properties:

grid.mapfile

<ant antfile="${main.buildfile}" target="dep">
 <property name="module" value="provider-slocal"/>
</ant>

<shared_username> ALL=(<target_usernames_list>) NOPASSWD: <cog_path>/libexec/job-wrapper

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

69 of 71 9/1/06 5:18 AM

Indicates the location of the gridmap file. The default is /etc/grid-security/grid-mapfile.
sudo

Points to the location of sudo.
nosudo

If the target user is the same as the user under which the shared service is running, then the value of this
property will be used as the path to a program used to start the wrapper.

job.wrapper
The location of the wrapper. It defaults to <cog_path>/libexec/job-wrapper, therefore it
should not be necessary to specify this property unless a non-standard configuration is used.

An example configuration file is shown below:

Embeding Karajan into Java
This document provides details on the two modes through which Karajan scripts can be used from Java code

The first possibility is to use the Karajan parser to build an internal representation of the code, and execute it.
Example:

An alternative, seemingly easier way to do the same is:

The other possibility is to build an ElementTree without parsing:

grid.mapfile=/etc/grid-security/grid-mapfile

sudo=/usr/bin/sudo

nosudo=/bin/bash

job.wrapper=/home/karajan/cog/libexec/job-wrapper

try {
 ElementTree tree = Loader.loadFromString("include(\"sys.k\"), print(\"Hello world!\")");
 ExecutionContext ec = new ExecutionContext(tree);
 ec.start();
 ec.waitFor();
}
catch (Exception e) {
 e.printStackTrace();
}

KarajanWorkflow workflow = new KarajanWorkflow();
workflow.setSpecification("...");
workflow.start();
workflow.waitFor();
if (workflow.isFailed()) {
 System.err.println("Failed:");
 worklfow.getFailure().printStackTrace();
}

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

70 of 71 9/1/06 5:18 AM

This would be roughly equivalent to:

It is worth noting that it is not necessary to import the System Library because there is no need to resolve
names of elements to implementations, since the implementations are specified directly.

More details about the mapping of element names to implementations can be found by consulting the actual
library definitions found in the resource
(http://svn.sourceforge.net/viewvc/cogkit/trunk/current/src/cog/modules/karajan/resources) directry. Listed
below are a few common libraries with links to their sources (from which the mapping can be infered):

sys-common.xml
(http://svn.sourceforge.net/viewvc/cogkit/trunk/current/src/cog/modules/karajan/resources/sys-common.xml?view=markup

sys.xml
(http://svn.sourceforge.net/viewvc/cogkit/trunk/current/src/cog/modules/karajan/resources/sys.xml?view=markup

task.xml
(http://svn.sourceforge.net/viewvc/cogkit/trunk/current/src/cog/modules/karajan/resources/tsk.xml?view=markup

Notes
The current implementation will first translate the native syntax to XML, then parse the resulting XML file

References
All CoG Kit references can be found [here
(http://wiki.mcs.anl.gov/gregor/index.php/Gregor_von_Laszewski#PUBLICATIONS_AND_PRESENTATIONS
]

try {
 ElementTree tree = new ElementTree();

 Sequential s = new Sequential();
 Print p1 = new Print();
 p1.setProperty("message", "Hello");
 p1.setProperty("nl", Boolean.FALSE);
 Print p2 = new Print();
 p2.setProperty("message", " world!");
 s.addElement(p1);
 s.addElement(p2);
 tree.setRoot(s);

 ExecutionContext ec = new ExecutionContext(tree);
 ec.start();
 ec.waitFor();
}
catch (Exception e) {
 e.printStackTrace()
}

sequential(
 print(message = "Hello", nl = false)
 print(message = " world!")
)

Java CoG Kit Karajan Workflow Reference Manual 4.1.4 - Java Co... http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow...

71 of 71 9/1/06 5:18 AM

las06karajan
(http://wiki.mcs.anl.gov/gregor/index.php/Gregor_von_Laszewski#las06karajan)

Java CoG Kit Workflow in to be published, Gregor von Laszewski,
Mihael Hategan, and Deepti Kodeboyina, Argonne National Laboratory,
Argonne IL, 60430, USA gregor@mcs.anl.gov, 2006.

las05workflow-jgc
(http://wiki.mcs.anl.gov/gregor/index.php/Gregor_von_Laszewski#las05workflow-jgc)

Java CoG Kit Workflow Concepts
Hategan, in Journal of Grid Computing,
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-jgc.pdf
Electronic Publication Link, Jan. 2006.
http://dx.doi.org/10.1007/s10723-005-9013-5

Retrieved from
"http://wiki.cogkit.org/index.php/Java_CoG_Kit_Karajan_Workflow_Reference_Manual_4.1.4"

This page was last modified 15:09, 28 August 2006.
This page has been accessed 161 times.
Privacy policy
About Java CoG Kit
Disclaimers

