
7

Scientific Grid Workflows

Workflow modeling is a well established area in computer science that was
strongly influenced by business process modeling work [187]. Recently, the
Grid community has generally acknowledged that orchestrating existing soft-
ware applications implemented as Grid services in course grain workflows rep-
resents an important class of applications that matches the loosely coupled
Grid model and, therefore, can benefit from being executed in distributed Grid
infrastructures. Similarly, in order to efficiently harness the computational re-
sources provided by the Grid, existing monolithic scientific applications are
currently being re-engineered and decomposed in a set of atomic activities
orchestrated in a loosely coupled scientific workflow [58, 133].

Despite their similarities with the workflows originating from the business
world, scientific workflows to be executed in Grid infrastructures present fun-
damental differences that make them rather unique and, therefore, impose
specific requirements to support them:

• large number of activity instances (i.e. hundreds to thousands) which are
difficult or impossible to express individually;

• computationally intensive activities with long and often unpredictable ex-
ecution times;

• complex data dependencies of various sizes ranging from few bytes to sev-
eral gigabytes;

• sequential loops that transform workflows into complex DG-based struc-
tures, as opposed to simpler DAGs characteristic to the business world;

• dynamic control and data flow structure, often unknown before the ex-
ecution, that may change at runtime depending on the input workflow
parameters or on the output results produced by the workflow activities;

• unreliable execution resources that raise complex fault tolerant issues.

There is currently a large amount of research in the Grid community de-
voted to the specification of scientific workflow applications that range from
low level scripting languages [1, 53, 114, 127, 161], to high level abstract XML
representations [7, 10, 45, 63, 70, 101, 106, 115], and user friendly graphical

204 7 Scientific Grid Workflows

interfaces [26, 35, 65, 151]. Still, a common consensus on the fundamental
structural and runtime characteristics of scientific Grid workflows is missing.
In this chapter we aim to complement these efforts by introducing a formal
model for expressing scientific workflows and a runtime environment for reli-
able and scalable execution in dynamic Grid infrastructures.

7.1 Workflow Model

In Section 2.6.3 we introduced a simple workflow model that represents the fi-
nal runtime representation of the application scheduled on heterogeneous Grid
resources using the ZENTURIO optimisation framework. Such a representa-
tion, however, is clearly not friendly for describing scientific workflows at the
user level assuming the characteristics listed at the beginning of this chapter,
like large sets of activities whose precise number is statically unknown before
the execution of the workflow.

In this section we present a generic abstract model for formally represent-
ing large scale and complex scientific workflows in Grid environments. Our
representation is generic and independent of any language or grammar as un-
derlying implementation platform. For example, we implemented our model
through the XML-based Abstract Grid Workflow Language (AGWL) that we
described in [70].

Definition 7.1. We define a scientific workflow application as a DAG: W =
(Nodes,C-edges,D-edges, IN-ports,OUT-ports), where:

1. Nodes is the set of workflow activities;
2. C-edges =

⋃
Ns,Nd∈Nodes (Ns,Nd) is the set of control flow dependencies;

3. D-edges =
⋃

Ns,Nd∈Nodes (Ns,Nd,D-port) is the set of data flow depen-
dencies;

4. IN-ports is the set of workflow input data ports;
5. OUT-ports is the set of workflow output data ports.

An activity N ∈ Nodes is a mapping from a set of input data ports IN-portsN

to a set of output data ports OUT-portsN:

N : IN-portsN → OUT-portsN.

A data port D-port ∈ IN-portsN×OUT-portsN is an an association between a
unique identifier (within the workflow representation) and a well-defined type:

D-port = (identifier, type).

The type of a data port is instantiated by the type system supported by
the underlying implementation language, e.g. the XML schema. The most
important data type according to our experience that shall be supported for
Grid workflows is file along side other basic types such as integer, float, or
string.

An activity N ∈ Nodes can be of several kinds:

7.1 Workflow Model 205

1. computational activity or atomic activity represents an atomic unit of
computation such as a legacy sequential or parallel application following
the model that we defined in Section 2.6.3;

2. composite activity is a generic term for an activity that aggregates multiple
(atomic and composite) activities according to one of the following four
patterns:
a) parallel loop activity allows the user to express large scale workflows

consisting of a large number (i.e. hundreds to thousands) of atomic
activities in a compact manner;

b) sequential loop activity defines iterative recursive computations with
possibly unknown number of iterations determined by dynamic con-
vergence criteria that depend on the runtime output data port values
computed within one iteration;

c) conditional activity models if and switch-like statements that acti-
vate one from its multiple successor activities based on the evaluation
of a boolean condition;

d) workflow activity is introduced for modularity and reuse purposes, and
is recursively defined according to Definition 7.1.

Definition 7.2. Our workflow model is therefore based on a hierarchical rep-
resentation, in which an activity N is called the child of the parent com-
posite activity Np = Parent(N) to which it belongs: N ∈ Np. We denote as
Parentn (N) the ancestor of degree n of the activity N, where: N ∈ Parent(N) ∈
. . . ∈ Parentn−1 (N) ∈ Parentn (N). We call the workflow that models the en-
tire scientific application according to Definition 7.1 as root workflow.

7.1.1 Computational Activity

A computational activity defines an atomic unit of work instantiated at run-
time by a computational job running on a remote Grid site according to
the model defined in Section 2.6.3. A computational activity has a unique
type that defines the computation performed by any underlying implementa-
tion such as matrix multiplication, LAPW material science calculation (see
Section 4.2.2), 3DPIC photonic application (see Section 4.2.3), benders de-
composition method (see Section 4.2.4), or three-dimensional FFT (see Sec-
tion 4.2.5). An activity type has a well-defined interface described by the type
of its input and output data ports.

Definition 7.3. A computational activity deployment is a mapping from an
activity type to a URL that indicates the Grid location where an implementa-
tion of the activity type exists:

AD : type → URL.

Similarly, a computational activity instance is a mapping from an activity
deployment to an URL that defines the Grid location where the activity de-
ployment is executing. We express the data port runtime value of an activity

206 7 Scientific Grid Workflows

instance N using an evaluation function:

ωN : IN-portsN ∪ OUT-portsN → type.

In our model, the activity deployment URL uses the gsi GridFTP protocol,
while the activity instance URL is accessible through a Web service-enabled
GRAM server using the http protocol (see Section 2.6.3). Activity types and
activity deployments are typically published within a Grid information service
like Globus MDS.

7.1.2 Control Flow Dependencies

Definition 7.4. The set of control flow dependencies C-edges of a workflow
introduced in Definition 7.1 defines a control precedence relation, denoted as
≺c which is a partial order over the activity set Nodes:

≺c: Nodes × Nodes → boolean, N1 ≺c Nn ⇐⇒
⇐⇒ ∃ ρ = {N1, . . . ,Nn} ⊂ Nodes ∧ (Ni,Ni+1) ∈ C-edges,

∀ i ∈ [1..n − 1] ∧ � (Nj ,Nk) ∈ ρ ∧ 1 ≤ k < j ≤ n.

We call N1 the source and Nn the sink of the control flow dependency (N1,Nn),
with the execution semantics indicating that N1 cannot start before Nn com-
pletes its execution.

The control precedence relation between two activities N1 ≺c Nn can be
of two kinds:

1. direct ⇐⇒ (N1,Nn) ∈ C-edges;
2. indirect ⇐⇒ (N1,Nn)
∈ C-edges.

Similar to Definition 2.7 in Chapter 2, we define the set of predecessors of a
workflow activity N as the set:

pred(N) =
⋃

∀ (Npred,N)∈C-edges

Npred,

and the set of successors of a workflow activity N as the set:

succ(N) =
⋃

∀ (N,Nsucc)∈C-edges

Nsucc.

7.1.3 Data Flow Dependencies

Definition 7.5. The data flow dependency elements of the D-edges set define
a data precedence relation, denoted as ≺d, over the set of the activities Nodes
of a workflow:

≺d: Nodes × Nodes → boolean,

Ns ≺d Nd ⇐⇒ (Ns,Nd,D-port) ∈ D-edges.

7.1 Workflow Model 207

A data flow dependency between two activities is consistent if and only if
it connects one input port of the source activity N1 with one output port of
the sink activity N2:

(N1,N2,D-port) ∈ D-edges ⇐⇒
⇐⇒ D-port ∈ OUT-portsN1 ∧ D-port ∈ IN-portsN2 .

The semantics of the dependency is that the sink activity N2 requires as input
one output data of the source activity N1, denoted as D-port.

In our current execution model, the data precedence is a stronger relation-
ship which implies a control flow precedence too:

N1 ≺d N2 =⇒ N1 ≺c N2.

The semantics for the workflow enactment is that the output data of activity
N1 is considered as completed and can be sent to N2 only after N1 finished its
execution. We are planning in future work to eliminate this constraint through
other communication patterns such as data streams or pipelines.

7.1.4 Conditional Activity

Conditional activities model if or switch-like conditional statements whose
purpose is to select (enact) only one activity from a set of successor activities
(rather than fork all of them in parallel as in the case of DAGs or parallel
loops).

Definition 7.6. We represent a conditional activity of a scientific workflow
as a tuple: Nif =

(
if, Branches, IN-portsNif ,OUT-portsNif

)
where (see Fig-

ure 7.1(a)):

1. Branches =
⋃

∀ i∈[1..n] Ni is a set of so called branch activities that can
be atomic or composite activities, as introduced in Definition 7.1;

2. if is a surjective function that selects (enacts) one of the n branch activ-
ities Ni ∈ Branches based on its evaluation result:

if : D-port1 × . . . × D-portn → Branches,

where IN-portsNif =
⋃n

i=1 D-porti;
3. each input data port of the each branch activity must be consistently con-

nected to one input data port of the conditional activity:

IN-portsNi ⊆ IN-portsNif , ∀ i ∈ [1..n].

This constraint ensures that no input data port of any branch activity
remains not instantiated or connected outside the conditional activity (see
Figure 7.1(b));

208 7 Scientific Grid Workflows

Nprec

Nsucc

N1 N2 Nn. . .

if

Nif

(a) Valid conditional activity.

Nprec

Nsucc

N1 N2 Nn. . .

if
Nif

invalid

invalid

invalid

(b) Invalid conditional activity.

Fig. 7.1. A valid and an invalid conditional activity example.

4. each output data port of the conditional activity must be consistently con-
nected to exactly one output port of each branch activity:

OUT-portsNif ⊂
n⋃

i=1

OUT-portsNi .

This constraint ensures that no conditional branch leaves any of the
output data ports of the conditional activity not instantiated (see Fig-
ure 7.1(b)). All the remaining output ports of the branch activities from
the set

⋃n
i=1 OUT-portsNi \ OUT-portsNif are ignored.

7.1.5 Parallel Loop Activity

A common characteristic of scientific workflows is a large number of activities
instances of the same type with no dependencies in between which can be
executed in parallel on different Grid processors or sites. We therefore intro-
duce the parallel loop as a special type of composite activity which provides
a powerful mechanism for expressing such large scale workflow constructs in
a compact and user friendly manner.

Definition 7.7. We represent a parallel loop activity as a tuple: Npar =(
Nbody, IN-portsNpar ,OUT-portsNpar

)
, where:

1. ∃ (D-portcard, integer) ∈ IN-portsNpar a predefined cardinality input port
of type integer that defines the runtime cardinality of the parallel loop,

7.1 Workflow Model 209

denotes as |Npar|:
ωNpar

(D-portcard) = |Npar| ;
2. Nbody is an atomic or composite activity representing the parallel loop body

of which |Npar| independent instances are executed.

The cardinality port can be instantiated either statically before the workflow
execution or at runtime during workflow execution, for example from one
output port of a predecessor activity through a data flow dependency.

Obviously, it is often the case that such large parallel activities involve a
high number of data dependencies that are inconvenient to be individually
expressed, especially since for parallel loops they often follow certain regu-
lar pattern. To meet this requirement and support expressive communication
patterns involving parallel activities of high cardinality, we introduce a new
composite data port type called collection.

Definition 7.8. A collection is a composite data port D-portCOL that consists
of a homogeneous set of atomic data ports (of the same type) of cardinality
|D-portCOL| = card and an additional field called pattern that defines various
types of collective communication, as illustrated in Figure 7.2:

D-portCOL = (identifier, type, card, pattern).

1. broadcast (see Figure 7.2(a)) distributes the collection D-portCOL produced
by one atomic activity A to each atomic activity of the successor parallel
activity according to the constant function:

DISTRBCAST : A × Npar → D-portCOL, DISTRBCAST (A,N) = D-portCOL,

that generates the following set of data dependencies:

D-edgesNpar = A × Npar × DISTRBCAST (A,Npar) =

=
⋃

∀N∈Npar

(A,N,D-portCOL) ,

where × denotes the cross product operator between two sets;
2. scatter (see Figure 7.2(b)) distributes every ith element of the collection

D-portCOL produced by the atomic activity A to the ith element of the
successor parallel activity Npar according to the bijective function:

DISTRSG : A × Npar → D-portCOL, DISTRSG (A,Npar[i]) = D-portCOL[i],

that generates the following set of data dependencies:

D-edgesNpar = A × Npar × DISTRSG (A,Npar) =

=
⋃

∀N∈Npar

(A,N, DISTRSG (A,N)) .

210 7 Scientific Grid Workflows

The cardinality of the collection is equal with the cardinality input port
D-portcard of the parallel activity Npar:

|D-portCOL| = ωNpar (D-portcard) ;

3. gather (see Figure 7.2(c)) is the opposite of scatter and collects the output
of every ith atomic activity of the parallel activity Npar into the ith element
of the input data port collection D-portCOL of the successor atomic activity
A that generates the following set of data dependencies:

D-edgesNpar = Npar × A × DISTRSG (Npar, A) =

=
⋃

∀N∈Npar

(N, A, DISTRSG (N, A)) ,

where DISTRSG is a bijection function defined equally as for the scatter
communication. Similarly, the cardinality of the collection is equal with
the cardinality input port of the parallel activity Npar:

|D-portCOL| = ωNpar
(D-portcard) ;

4. parallel (see Figure 7.2(d)) distributes the ith collection element produced
by the parallel activity ANpar to the ith activity of the successor parallel
activity BNpar according to the function:

DISTRPAR : ANpar × BNpar → D-portCOL,

DISTRPAR (AN[i], BN[j]) =
{

D-portCOL[i], i = j;
∅, i
= j,

where ∅ denotes the empty set which expresses that no data dependency
between the two activities exists. This produces the following set of data
dependencies:

D-edgesNpar = ANpar × BNpar × DISTRPAR (ANpar, BNpar) =

=
⋃

∀ (N1,N2)∈ANpar×BNpar

(N1,N2, DISTRPAR (N1,N2)) .

The cardinality of the collection is equal with the cardinality input ports
D-portANpar

card and D-portBNpar

card of the two parallel activities ANpar, respec-
tively BNpar:

|D-portCOL| = ωANpar

(
D-portANpar

card

)
= ωBNpar

(
D-portBNpar

card

)
;

5. parallel broadcast (see Figure 7.2(e)) distributes the entire collection
D-portCOL produced by one parallel activity ANpar to all atomic activ-
ities of the successor parallel activity BNpar according to the constant
function:

7.1 Workflow Model 211

DISTRPBCAST : ANpar × BNpar → D-portCOL,
DISTRPBCAST (N1,N2) = D-portCOL,

which generates the following set of data flow dependencies:

D-edgesNpar = ANpar × BNpar × DISTRPBCAST (ANpar, BNpar) =

=
⋃

∀ (N1,N2)∈ANpar×BNpar

(N1,N2,D-portCOL) .

The cardinality of the collection is equal with the cardinality input port
of the input parallel activity ANpar:

|D-portCOL| = ωANpar (D-portcard) .

7.1.6 Sequential Loop Activity

Sequential loops typically model a series of repetitive (recursive) computations
possibly with a statically unknown number of iterations using a control flow
dependency that violates the control precedence relation (see Section 7.1.2,
Definition 7.4).

Definition 7.9. We define a sequential loop activity of a scientific workflow
as a tuple: Nloop =

(
if,Nbody, IN-portsNloop ,OUT-portsNloop

)
, where (see Fig-

ure 7.3):

1. Nbody is a composite or atomic activity that represents the loop body whose
input ports are a subset of the sequential loop activity input ports for mod-
ularity reasons:

IN-portsNbody ⊆ IN-portsNloop ;

2. if is a boolean function that decides upon true evaluation whether a new
iteration of the loop body Nbody must be executed:

if : IN-portsNloop → boolean;

3. the conditional and the body activities share a subset of so called recur-
sive ports that dynamically influence condition evaluation and, therefore,
number of loop iterations:

D-portrec = IN-portsNloop ∩ OUT-portsNbody
= ∅;

4. the output ports OUT-ports of the sequential loop must belong to the output
ports of the body activity Nbody or replicate the input ports IN-portsNloop

for consistency and modularity reasons:

OUT-portsNloop ⊆ IN-portsNloop ∪ OUT-portsNbody .

212 7 Scientific Grid Workflows

Collection D-portCOL

A

N1

Collection
D-portCOL

NnN2

Collection
D-portCOL

Collection
D-portCOL

Npar

. . .

(a) Broadcast.

Collection D-portCOL

A

N1

D-portCOL[1]

N2

D-portCOL[2]

Nn

D-portCOL[n]

Npar

. . .

(b) Scatter.

Collection D-portCOL

A

N1

D-portCOL[1]

NnN2

D-portCOL[2] D-portCOL[n]

Npar

. . .

(c) Gather.

BN1

D-portCOL[1]

BN2

D-portCOL[2]

BNn

D-portCOL[n]

BNpar

. . .

AN1

D-portCOL[1]

ANnAN2

D-portCOL[2] D-portCOL[n]

ANpar. . .

(d) Parallel.

Collection D-portCOL

BN1

Collection
D-portCOL

BNnBN2

Collection
D-portCOL

Collection
D-portCOL

BNpar

. . .

AN1

D-portCOL[1]

ANnAN2

D-portCOL[2] D-portCOL[n]

ANpar
. . .

(e) Parallel broadcast.

Fig. 7.2. The collection transfer patterns.

7.2 Scheduler 213

if

Nbody

IN-ports

OUT-ports

D-portrec

true

false

Nloop

(a) Valid sequential loop activity.

if

Nbody

IN-ports

OUT-ports

D-portrec

true

false

invalid

invalid

Nloop

(b) Invalid sequential loop activity.

Fig. 7.3. A valid and an invalid sequential loop activity.

7.1.7 Workflow Activity

Workflow activities isolate composite functionality of scientific workflows for
modularity and reuse purposes.

Definition 7.10. We define a workflow activity of as a tuple compliant
with the scientific workflow introduced in Definition 7.1, where: Wsub =
(Nodessub,C-edgessub,D-edgessub, IN-portssub,OUT-portssub), where

1. every input data ports of the workflow activity must be consistently con-
nected to one input port of its underlying activities:

IN-portsWsub ⊆
⋃

∀N∈Nodessub

IN-portsN;

2. each workflow output data port must be consistently connected to one out-
put port of one underlying activity:

OUT-portsWsub ⊆
⋃

∀N∈Nodessub

OUT-portsN.

7.2 Scheduler

The Scheduler [189, 190] is a best effort service in our tool integration archi-
tecture whose goal is to find good mappings of entire workflows onto available

214 7 Scientific Grid Workflows

Grid resources. In Chapter 6 we presented an implementation of the Sched-
uler within the generic ZENTURIO optimisation framework using a primitive
intermediate workflow representation and a modular architecture open to dif-
ferent plug-and-play algorithms and objective functions. In this section, we
extend our service with two modular components to incorporate the high level
scientific workflow model described in the previous section:

1. workflow converter (see Section 7.2.1) for transforming compact hierarchi-
cal scientific workflows into flat DAGs compliant with the model presented
in Section 2.6.3 that can be given as input to the optimisation framework
described in Chapter 6;

2. scheduling engine (see Section 7.2.2) which includes a specialised graph-
based algorithm that aims to reduce the complexity of the genetic al-
gorithm for finding good workflow schedules, as we will demonstrate in
Sections 7.2.4 and 7.2.5.

7.2.1 Workflow Converter

A peculiarity of the workflow scheduling heuristics, such as our optimisation
approach presented in Chapter 6, is that they are based on the DAG model
for two main reasons:

1. static DAGs allow objective functions be precisely evaluated for the entire
workflow. This clearly cannot be achieved for our scientific workflow model
that contains loops with unknown number of iterations or undecidable
conditional activities (see Section 7.1);

2. scheduling complete workflows in advance has the potential of producing
better mappings optimised for the particular workflow structure, as we
will demonstrate in the experimental part of this section.

The purpose of the workflow converter is therefore to transform hierarchical
DG-based scientific workflows into plain DAGs, compliant with the model
introduced in Section 2.6.3, that can be subject to heuristic algorithms for
optimised scheduling on the Grid such as the genetic algorithm presented in
Chapter 6. There are four constructs corresponding to the four composite ac-
tivities described in Section 7.1 which need to be handled by the converter for
transforming hierarchical scientific workflows into static DAGs of atomic activ-
ities: conditional activities, sequential loops, parallel loops, and sub-workflows.
These transformations usually require additional prediction information such
as the probability of execution of each branch in conditional activities or the
number of iterations within sequential and parallel loops, which we compute
from historical data stored in the Experiment Data Repository. Transforma-
tions based on correct assumptions can imply substantial performance ben-
efits, while incorrect assumptions require appropriate runtime adjustments
such as undoing existing optimisations or rescheduling based on the new in-
formation available.

7.2 Scheduler 215

Algorithm 5 depicts the pseudocode of the workflow conversion algorithm
implemented by the wf-converter function that inlines a composite activity
N into the root workflow W. The algorithm invokes a custom conversion func-
tion based on the type of composite activity (see lines 3, 5, 7, and 9) that, as
an outcome, is inlined into the original root workflow. The algorithm is first
called using the original root workflow W as composite activity. i.e.

wf-converter (W,W)

which is transformed into a DAG as a result of the function evaluation. We
present in the following subsections the custom conversion function for each
particular composite activity.

Branch Expansion

Let Nif =
(
if, Branches, IN-portsNif ,OUT-portsNif

)
denote a conditional

activity. The branch expansion transformation uses prediction information
about the probability of execution of each alternative branch activity defined
by the following function:

Pr : Branches → [0, 1],
∑

∀N∈Branches

Pr (N) = 1.

As an outcome, this transformation replaces the conditional activity with the
complete set of branch activities, as follows (see Figure 7.4 and Algorithm 5):

1. add the branch activities to the set of activities of the root workflow (line
17);

2. replace the control and data flow dependencies involving the conditional
activity with control and data flow dependencies to, respectively from, the
branch activities (lines 18 and 19), depending on the data port type;

3. eliminate the conditional activity together with the incoming and outgoing
control and data flow dependencies (line 20);

4. recursively apply the workflow conversion algorithm on all the composite
branch activities (lines 21 − 23).

Definition 7.11. Let N denote an arbitrary workflow activity and TN its
predicted execution time. We calculate the probabilistic predicted time of N
by weighting it with its probability of execution Pr(N):

TN = Pr(N) · TN.

The probability of execution of an arbitrary activity N with respect to the
entire root workflow Wroot = Parentn (N) is the probability of execution Pr(N)
weighted with the execution probabilities all parent activities:

Prroot (N) = Pr (N) ·
n∏

i=1

Pr
(
Parenti (N)

)
.

Obviously, Pr (Wroot) = 1.

216 7 Scientific Grid Workflows

N1

if1

N2 N3

N5

0.2

if2 N4

N6

Nif1

Nif2
0.40.6

0.8

(a) Original workflow.

N1

N5

N2 N3 N4

N6

(b) Workflow after branch expansion.

Fig. 7.4. A sample workflow with two nested conditional activities.

We employ the probabilistic predicted time (rather than predicted execution
time) of each individual activity when calculating the makespan objective
function during the scheduling algorithm (see Section 6.1.2).

For example, Figure 7.4(a) displays a workflow containing two conditional
activities Nif1 and Nif2 and the corresponding probabilities of executing the
branch activities, where:

Nif1 = Parent (Nif2) = Parent2 (N2) = Parent2 (N3) =
= Parent (N4) = Parent (N5) ;

Nif2 = Parent (N2) = Parent (N3) ;
Prroot (N1) = Pr (Nif1) = Pr (N6) = 1;
Prroot (Nif2) = 1 · Pr (Nif1) = 0.8;
Prroot (N2) = Pr (N2) · Pr (Nif2) · Pr (Nif1) = 0.6 · 0.8 · 1 = 0.48;
Prroot (N3) = Pr (N3) · Pr (Nif2) · Pr (Nif1) = 0.4 · 0.8 · 1 = 0.32;
Prroot (N4) = Pr (N4) · Pr (Nif1) = 0.2 · 1 = 0.2;
Prroot (N5) = Pr (N5) · Pr (Nif1) = 0.8 · 1 = 0.8.

Parallel Loop Unrolling

Parallel loop unrolling uses prediction information about the number of atomic
activities in a composite parallel loop activity which instantiates the cardinal-
ity port:

ωNpar : IN-portsNpar ∪ OUT-portsNpar → integer,

ωNpar (D-portcard) = |Npar| .

7.2 Scheduler 217

As an outcome, this transformation eliminates the parallel loop and gener-
ates a larger graph of atomic activities suitable for optimisation scheduling
heuristics, as follows (see Algorithm 5):

1. unroll the parallel loop by adding a number of activity body clones (i.e.
identical copies) to the root workflow activity set equal to the runtime
value of the cardinality port (lines 37 and 38);

2. replace the control flow dependencies involving the composite parallel loop
activity with control and data flow dependencies to, respectively from, all
activity body clones representing the unrolled loop iterations (line 39);

3. replace the data flow dependencies to / from the parallel loop activity
with data flow dependencies to / from all activity body clones according
to the collection transfer patterns presented in Section 7.1.5 (line 40);

4. eliminate the parallel loop activity together with the incoming and out-
going control and data flow dependencies (line 41);

5. recursively convert the unrolled activity body clones in case they are com-
posite activities (line 42).

For example, Figure 7.7(a) in Section 7.2.4 illustrates a compact representa-
tion of the WIEN2k workflow (originally introduced in Section 6.3.1), while
Figure 7.7(b) displays the new workflow after unrolling the two parallel loops
LAPW1 and LAPW2.

Sequential Loop Unrolling

Sequential loop unrolling uses forecast information about the number of itera-
tions to be executed in sequential loops. As an outcome, the converter unrolls
the loops which eliminates the recursive cycles in scientific workflows that, as
a consequence, are transformed from DG-based structures into DAGs. This
transformation is particularly useful in cases when the resources and execu-
tion time required by the workflow activities depend on the iteration number.
The Scheduler can therefore achieve better mappings by considering multiple
iterations in advance.

The unrolling of one loop iteration is performed in several steps, as follows
(see Algorithm 6):

1. add a clone of the sequential loop body to the set of activities of the root
workflow (lines 53 − 54);

2. insert the body activity in the root workflow by adding the appropriate
control flow and data flow dependencies, as depicted in Figure 7.5 (lines
55 − 56);

3. recursively inline the loop body in the root workflow by recursively ap-
plying the workflow conversion function (line 57);

4. connect the control and data flow of the last unrolled loop iteration body
with the successors of the conditional activity (lines 60 − 61);

5. finally, eliminate the sequential loop activity from the workflow (line 62);

218 7 Scientific Grid Workflows

if

Nbody
D-portrec

true

false

Nloop IN-portsNbody

Nbody

Nbody

pred(Nif)

succ(Nif)

D-portrec

IN-portsNbody

\
D-portrec

OUT-portsNif

OUT-portsNif

IN-portsNif

eliminate

eliminate

Fig. 7.5. The two iteration sequential loop unrolling.

For example, Figure 7.7(a) in Section 7.2.4 illustrates a compact representa-
tion of the WIEN2k workflow (originally introduced in Section 6.3.1) using
a UML-based modeling tool [151]. The left window displays the sequential
loop composite activity, while the right window models the loop body. Fig-
ure 7.7(b) displays the new DAG-based workflow after unrolling one iteration
of the sequential loop body (and also the parallel loops as presented in the
previous section).

Workflow Inlining

The workflow inlining transformation expands sub-workflows, defined for
modularity and reuse purposes as composite activities, into the root workflow
for optimised mapping of large flat workflow structures using heuristic-based
optimisation algorithms. A sub-workflow is inlined into the parent workflow
through the following steps (see Algorithm 6):

1. add the activities of the sub-workflow to the activity list of the root work-
flow (line 68);

2. add the control flow and data flow dependencies of the sub-workflow to
the control flow, respectively data flow dependencies of the root workflow
(see lines 69 and 70);

3. replace the control and data flow dependencies to / from the sub-workflow
with control and data flow dependencies to / from the sub-workflow nodes
with no predecessors / successors (line 71);

4. replace the data flow dependencies to / from the sub-workflow with data
flow dependencies to / from the sub-workflow nodes with the same input
/ output data ports (line 72);

5. eliminate the sub-workflow composite activity together with the incoming
and outgoing control flow and data flow dependencies (line 73);

7.2 Scheduler 219

Algorithm 5 The workflow conversion algorithm (I).
1: function wf-converter(Wroot,N)
2: if N is a Nif then
3: Wroot ← branch-expansion(Wroot,N)
4: else if N is a Nloop then
5: Wroot ← seq-loop-unrolling(Wroot,N)
6: else if N is a Npar then
7: Wroot ← par-loop-unrolling(Wroot,N)
8: else if N is a W then
9: Wroot ← wf-inlining(Wroot,N)

10: end if
11: return Wroot

12: end function
13:
14: function branch-expansion(W,Nif)
15: W =

(
Nodes,C-edges,D-edges, IN-portsW ,OUT-portsW

)
16: Nif =

(
if, Branches, IN-portsNif ,OUT-portsNif

)
� Preconditions

17: Nodes ← Nodes ∪ Branches
18: C-edges ← C-edges ∪ (pred (Nif) × Branches) ∪ (Branches × succ (Nif))

19:

D-edges ← D-edges
⋃

∀ (Npred,Nif ,D-port)∈D-edges∧
∀N∈Branches ∧D-port∈IN-portsN

(Npred,N,D-port) ∪
⋃

∀ (Nif ,Nsucc,D-port)∈D-edges∧
∀N∈Branches ∧D-port∈IN-portsN

(N,Nsucc,D-port)

20: W ← activity-elimination(W,Nif) � Eliminate composite activity

21: for all N ∈ Branches do
22: W ← wf-converter(W,N) � Convert the branch activities

23: end for
24: return W
25: end function
26:
27: function activity-elimination(W,N)
28: W = (Nodes,C-edges,D-edges, IN-ports,OUT-ports) � Precondition

29: Nodes ← Nodes \ N
30: C-edges ← C-edges \ (pred(N) × N) \ (N × succ(N))

31:
D-edges ← D-edges \ (

pred(N) × N × IN-portsN
) \

\ (
N × succ(N) × OUT-portsN

)
32: return W
33: end function

6. recursively apply the workflow conversion algorithm to all the composite
sub-workflow activities (line 74 − 76).

Data Port Elimination

Data port elimination does one last cosmetic change to the workflow by con-
verting each data flow dependency into one data transfer activity connected
through control flow dependencies to the source, respectively the sink of the

220 7 Scientific Grid Workflows

Algorithm 6 The workflow conversion algorithm (II).
34: function par-loop-unrolling(W,Npar)
35: W =

(
Nodes,C-edges,D-edges, IN-portsW ,OUT-portsW

)
36: Npar =

(
Nbody, IN-portsNpar ,OUT-portsNpar

)
� Preconditions

37: PN ← ⋃|Npar|
i=1 clone(N)

38: Nodes ← Nodes ∪ PN
39: C-edges ← C-edges ∪ (pred (Npar) × PN) ∪ (PN × succ (Npar))
40: D-edges ← D-edges

⋃
∀ (N,Npar,D-port)∈D-edges

∀ (Npar,N,D-port)∈D-edges

D-edgesNpar � D-edgesNpar was

defined in Section 7.1.5

41: W ← activity-elimination(W,Npar) � Eliminate composite activity

42: for all N ∈ Npar do
43: W ← wf-converter(W,N) � Convert the loop body

44: end for
45: return data-port-elimination(W)
46: end function
47:
48: function seq-loop-unrolling(W,Nloop, n) � Unroll n iterations

49: W =
(
Nodes,C-edges,D-edges, IN-portsW ,OUT-portsW

)
50: Nloop =

(
if,Nbody, IN-portsNloop ,OUT-portsNloop

)
� Preconditions

51: Npred ← pred (Nloop)
52: for all i ∈ [1..n] do � Unroll the loop body

53: CNbody ← clone(Nbody)
54: Nodes ← Nodes ∪ CNbody

55: C-edges ← C-edges ∪ (Npred × CNbody)

56:

D-edges ← D-edges
⋃

∀ (N,Nloop,D-port)∈D-edges∧
D-port∈IN-ports

Nbody \D-portrec

(N, CNbody,D-port) ∪
⋃

∀ (N,Nloop,D-port)∈D-edges

∧D-port∈D-portrec

(Npred, CNbody,D-port)

� D-portrec was defined in Section 7.1.6

57: W ← wf-converter(W, CNbody) � Convert the loop body

58: Npred ← CNbody

59: end for
60: C-edges ← C-edges ∪ (CNbody × succ (Nloop))
61: D-edges ← ⋃

∀ (Nloop,Nsucc,D-port)∈D-edges (CNbody,Nsucc,D-port)

62: W ← activity-elimination(W,Nloop) � Eliminate composite activity

63: return W
64: end function

eliminated data dependency (see Algorithm 7, lines 81 − 84). Additionally,
the input and output ports of the workflow are transformed into data transfer
activities that perform input and output file staging (see lines 85−88, respec-
tively 89 − 92). The purpose of this transformation is to make the workflow
compliant with the internal representation introduced in Section 2.6.3 which
we used for optimisation in Chapter 6.

7.2 Scheduler 221

Algorithm 7 The workflow conversion algorithm (III).
65: function wf-inlining(W,Wsub)
66: W =

(
Nodes,C-edges,D-edges, IN-portsW ,OUT-portsW

)
� Preconditions

67: Wsub =
(
Nodessub,C-edgessub,D-edgessub, IN-portsWsub ,OUT-portsWsub

)
68: Nodes ← Nodes ∪ Nodessub

69: C-edges ← C-edges ∪ C-edgessub

70: D-edges ← D-edges ∪ D-edgessub

71:

C-edges ← C-edges ∪
(

pred (Wsub) ×
⋃

∀N∈Nodessub
∧ pred(N)=∅

N

)
∪

∪
(⋃

∀N∈Nodessub
∧ succ(N)=∅

N × succ (Wsub)

)

72:

D-edges ← ⋃
∀ (N,Wsub,D-port)∈D-edges

⎛
⎝N × ⋃

∀N′∈Nodessub ∧
D-port∈IN-portsN

′
N′ × D-port

⎞
⎠∪

⋃
∀ (Wsub,N,D-port)∈D-edges

⎛
⎝⋃

∀N′∈Nodessub ∧
D-port∈OUT-portsN

′
N′ × N × D-port

⎞
⎠

73: W ← activity-elimination(W,Wsub) � Eliminate composite activity

74: for all N ∈ Nodessub do
75: W ← wf-converter(W,N) � Convert all composite activities

76: end for
77: return W
78: end function
79:
80: function data-port-elimination(W)
81: for all (CA1 (z1) ,CA2 (z2) ,D-port) ∈ D-edges do
82: Nodes ← Nodes ∪ DAD-port (z1, z2)
83: C-edges ← C-edges ∪ (CA1,DAD-port) ∪ (DAD-port,CA2)
84: end for
85: for all D-port ∈ IN-portsW do
86: Nodes ← Nodes

⋃
∀CA(z)∈Nodes∧

D-port∈IN-portsCA

DA (zD-port, z)

87: C-edges ← C-edges
⋃

∀CA(z)∈Nodes∧
D-port∈IN-portsCA

(DA (zD-port, z) ,CA(z))

88: end for
89: for all D-port ∈ OUT-portsW do
90: Nodes ← Nodes

⋃
∀CA(z)∈Nodes∧

D-port∈OUT-portsCA

DA (z, zD-port)

91: C-edges ← C-edges
⋃

∀CA(z)∈Nodes∧
D-port∈OUT-portsCA

(CA(z),DA (z, zD-port))

92: end for
93: return (Nodes,C-edges)
94: end function

7.2.2 Scheduling Engine

The scheduling engine is responsible for the actual mapping of a workflow
application converted into a DAG onto the Grid resources. We designed the
engine as an independent module on top of the optimisation framework pre-

222 7 Scientific Grid Workflows

sented in Chapter 6, which allows different DAG-based scheduling heuristics
be plugged-in with no external modifications. The algorithms with varying
accuracy and complexity are based on different metrics as optimisation goals,
as already presented in Section 6.1.2 (see Chapter 6).

In this section we present two additional heuristics that we use to im-
plement the scheduling engine along side the genetic algorithm presented in
Section 6.1:

1. Heterogeneous Earliest Finish Time (HEFT) [200] algorithm that is a
list scheduling heuristic purposely tuned for scheduling complex DAGs in
heterogeneous environments;

2. a myopic just-in-time algorithm acting like an opportunistic resource bro-
ker, similar to the Condor matchmaking mechanism used by DAGMan.

Heterogeneous Earliest Finish Time Algorithm (HEFT)

Let A = (Nodes,C-edges) denote a workflow application, where Nodes repre-
sents the set of activities, and C-edges the set of control flow dependencies.
The HEFT algorithm, illustrated in pseudocode in Algorithm 8, is an exten-
sion of the classical list scheduling algorithm for heterogeneous environments
which consists of three distinct phases:

1. the weighting phase (lines 3 − 8);
2. the ranking phase (lines 9 − 19);
3. the mapping phase (lines 20 − 22).

We explain in the following these three phases through a concrete example
depicted in Figure 7.6.

Weighting

During the weighting phase (lines 3− 8) adjusted for heterogeneous Grid en-
vironments, we assign weights to the workflow activities equal to their prob-
abilistic predicted time that we defined in Section 7.2.1 (see Definition 7.11).
We estimate the predicted time of individual computational and data trans-
fer activities based on historical data or application specific analytical models
using techniques that we described in Section 6.1.2 and 6.3.1. Afterwards, we
calculate the weight associated to a computational activity CA ∈ Nodes as
the average value of the predicted execution times T PROC

CA on every individual
processor PROC available on the Grid (lines 3 − 5):

wCA = avg
∀ PROC∈GRID

{
TPROC

CA

}
, ∀ CA ∈ Nodes.

Similarly, we compute the weight associated to a data transfer activity as the
average of the predicted transfer times across all pairs of Grid sites (rather
than all Grid processors – lines 6 − 8).

7.2 Scheduler 223

CA1
weight = 7
rank = 38

DA1

CA2

DA3

CA4

DA2

CA3

DA4

weight = 4
rank = 15

weight = 11
rank = 26

weight = 9
rank = 9

weight = 5
rank = 31

weight = 3
rank = 18

weight = 2
rank = 11

weight = 6
rank = 15

Fig. 7.6. The HEFT weights and ranks for a sample workflow.

wDA = avg
∀ (M1,M2)∈GRID

{
T(M1,M2)

DA

}
, ∀ DA ∈ Nodes.

In the example depicted in Figure 7.6, the Grid consists of three processors
PROC1, PROC2, and PROC3, therefore, the weight of activity N1 is calculated as
follows:

wCA1 =
TPROC1

CA1
+ TPROC2

CA1
+ TPROC3

CA1

3
=

5 + 8 + 8
3

= 7,

and similarly:

wDA1 =
T(PROC1,PROC2)

DA1
+ T(PROC1,PROC3)

DA1
+ T(PROC2,PROC3)

DA1

3
=

6 + 4 + 5
3

= 5.

Table 7.1 displays the weights of all workflow activities calculated using the
same formulas.

(a) Computational activity ranks.

PROC1 PROC2 PROC3 w

CA1 5 8 8 7

CA2 9 13 11 11

CA3 3 4 5 4

CA4 7 10 10 9

(b) Data transfer activity ranks.

(PROC1, PROC2) (PROC1, PROC3) (PROC2, PROC3) w

DA1 6 4 5 5

DA2 4 2 3 3

DA3 7 4 7 6

DA4 1 1 4 2

Table 7.1. The HEFT weight and rank calculations for the sample workflow de-
picted in Figure 7.6.

224 7 Scientific Grid Workflows

Algorithm 8 The HEFT algorithm.
1: function HEFT(W, GRID)
2: W = (Nodes,C-edges) � Precondition

3: for all CA ∈ Nodes do � Weighting phase

4: wCA ←
∑

∀ PROC∈GRID TPROC
CA

|GRID| � |GRID| = no. of processors in GRID

5: end for
6: for all DA ∈ Nodes do

7: wDA ←
∑

∀ PROC1 �=PROC2∈GRID T
(PROC1,PROC2)
DA

C2
|GRID|

� C2
|GRID| = combination of |GRID|

elements taken 2 at a time

8: end for
9: ListC-edges ← C-edges � Ranking phase

10: ListNodes ← Nodes
11: while ListC-edges �= ∅ do
12: for all N ∈ ListNodes ∧ (succ(N) ∩ ListC-edges = ∅) do
13: RN ← wN + max

∀Nsucc∈succ(N)
{wNsucc}

14: ListC-edges ← ListC-edges \ (pred(N) × N)
15:
16: ListNodes ← ListNodes \ N
17: end for
18: end while
19: RL ← sort(Nodes, RN) � Sort the activities based on ranks

20: for all i ∈ [1..|RL|] do � Mapping phase

21: N ← RLi

22: SN ← PROC, where end(N, PROC) = min
∀ P∈GRID

{end(N, P)} � end function

was defined in Section 6.1.2 (see Definition 6.7)

23: end for
24: return SW � Workflow schedule

25: end function

Ranking

The ranking phase (lines 9 − 19) is performed by traversing the workflow
graph upwards and assigning a rank value to each activity. The rank value of
an activity is equal to the weight of the activity plus the maximum rank value
of all the successors (line 13):

RN = max
∀Nsucc∈succ(N)

{
wN + RNsucc

}
.

For example, the rank of the activity CA1 is calculated as:

RCA1 = max
{
wCA1 + RDA1 , wCA1 + RDA2

}
= max {7 + 31, 7 + 18} = 38.

The list of workflow activities is then sorted in a descending order according
to their ranks (line 19), i.e. CA1, DA1, CA2, DA2, CA3, DA3, DA4, and CA4.

7.2 Scheduler 225

Mapping

Finally in the mapping phase (lines 20−22), the ranked activities are mapped
onto the processors that deliver the earliest completion time according to the
Definition 6.7 in Section 6.1.2, i.e.:

end (CA1) = min {5, 8, 8} = 5 ⇒ S (CA1) = PROC1;
end (CA2) = min {5 + 0 + 9, 5 + 6 + 13, 5 + 4 + 11} = 14 ⇒ S (CA2) = PROC1;
end (CA3) = min {14 + 0 + 3, 5 + 4 + 4, 5 + 2 + 5} = 12 ⇒ S (CA3) = PROC3;
end (CA4) = min {max {14 + 0, 12 + 1} + 7,

max {14 + 7, 12 + 4} + 10,
max {14 + 4, 12 + 0} + 10} = 21 ⇒ S (CA4) = PROC1.

Myopic Algorithm

To compare the two heuristic-based scheduling algorithms addressed so far
(i.e. HEFT and genetic algorithm), we developed a simple and inexpensive
heuristic which makes the mapping based on local optimal decisions similar
to the matchmaking mechanism performed by a resource broker like Condor
DAGMan [1] (see Algorithm 9). The algorithm traverses the workflow in the
top-down direction (lines 5 and 6), analysis every activity separately, and
assigns it to the processor which delivers the earliest completion time (line 7).

7.2.3 Layered Partitioning

We designed two alternative approaches for applying the scheduling algo-
rithms to better cope with various workflow topology structures:

Algorithm 9 The myopic scheduling algorithm.
1: function myopic(W, GRID)
2: W = (Nodes,C-edges) � Precondition

3: ListNodes ← Nodes
4: ListC-edges ← C-edges
5: while ListNodes �= ∅ do
6: for all N ∈ ListNodes ∧ (pred(N) ∩ ListC-edges = ∅) do
7: SN ← PROC, where end(N, PROC) = min

∀ P∈GRID
{end(N, P)} � end

function was defined in Section 6.1.2 (see Definition 6.7)

8: ListNodes ← ListNodes \ N
9: ListC-edges ← ListC-edges \ (N × succ(N))

10: end for
11: end while
12: return SW � Workflow schedule

13: end function

226 7 Scientific Grid Workflows

1. full-ahead scheduling considers the entire workflow as part of the conver-
sion and optimisation processes and is more suitable for workflows with
irregular (imbalanced) structures (see Section 7.2.5);

2. layered partitioning considers as input to the conversion algorithm only
a sub-workflow of a given depth of n atomic activities, calculated for
a workflow W =

(
Nodes,C-edges,D-edges, IN-portsW ,OUT-portsW

)
, as

follows:

Wn =
(
Nodesn,C-edgesn,D-edgesn, IN-portsWn ,OUT-portsWn

)
,

where:
• Nodesn ⊆ Nodes;
• succm(N) ∈ Nodesn, ∀ N ∈ Nodesn ∧ pred(N) = ∅ ∧ ∀ m ∈ [1..n];
• succn+1(N)
∈ Nodesn, ∀ N ∈ Nodesn ∧ pred(N) = ∅;
• D-edgesn =

⋃
∀ (N1,N2,D-port)∈D-edges

∧N1,N2∈Nodesn

(N1,N2,D-port);

• IN-portsWn = IN-portsW ;
• OUT-portsWn =

⋃
∀N∈Nodesn ∧

succ(N) �∈Nodesn

OUT-portsN.

This method is more suitable for workflows with regular structures and
large number of activities, since it needs less scheduling time to compute
optimised mappings of smaller sub-workflows (especially for the genetic
algorithm described in Section 6.2) while preserving the overall quality of
the solution (see Section 7.2.4)

7.2.4 WIEN2k

The first real application that we use for the scheduling experiments is the
WIEN2k material science application that we already introduced in Sec-
tion 6.3.1. In the first step, we modeled the application in a compact and
intuitive manner according to the scientific workflow model described in Sec-
tion 7.1 using a graphical UML modeling portal [151]. The hierarchical UML
representation of WIEN2k consists of one outermost sequential loop compos-
ite activity called whileConv depicted in the left window of Figure 7.7(a). The
right window displays the content of the sequential loop body (one iteration)
which consists of five serialised activities interconnected through control and
data flow dependencies, where LAPW1 and LAPW2 are composite parallel
loops while the others are atomic activities. We automatically translate this
graphical representation into an XML format [70] that is given as input to
the middleware services for scheduling followed by execution in a Grid envi-
ronment.

One peculiarity of the WIEN2k workflow is that the cardinality of paral-
lel LAPW1 and LAPW2 activities (see Section 7.1.5) is unknown until the
first activity LAPW0 completes its execution. Since this number is statically
unknown, the Scheduler instantiates the cardinality port of type integer with
a default value which assumes one single serial activity in each case. As a

7.2 Scheduler 227

(a) The WIEN2k hierarchical UML model.

(b) The converted WIEN2k DAG.

Fig. 7.7. The WIEN2k workflow representation.

consequence, the workflow is converted into a DAG which has a total of only
nine serialised activities that the Scheduler easily maps onto the same Grid
site that delivers the lowest makespan. Figure 7.8(a) displays the graphical
representation of the Gantt chart produced by the Scheduler after this initial
step, which we implemented based on a customised version of the Jumpshot
tool [199] for postmortem visualisation of MPI(CH) execution traces.

After the LAPW0 activity completes its execution, the Enactment Engine
(which we will present in detail in Section 7.3) reads the LAPW1 cardinality

228 7 Scientific Grid Workflows

(a) Initial Gantt chart.

(b) Gantt chart after rescheduling.

Fig. 7.8. The scheduling Gantt charts.

port that indicates the number of activities in the parallel loop (i.e. 250 in this
experiment) and issues an event that sends the workflow back to the Sched-
uler for rescheduling. The Scheduler uses this new runtime information to
convert the scientific workflow into a new larger DAG consisting of 250 activ-
ities in each LAPW1 and LAPW2 parallel loop, plus one enclosing sequential
loop iteration. After this second workflow conversion operation, the Scheduler
applies one of the heuristic-based algorithms on the large DAG depicted in
Figure 7.7(b) for optimised mapping onto the Grid. Figure 7.8(b) illustrates
the updated Gantt chart of the new workflow after rescheduling, in which one

7.2 Scheduler 229

can clearly see the two parallel activities LAPW1 and LAPW2, whose inner
computational activities are distributed across the Grid sites available. The
middle sequential activity LAPW2 FERMI synchronises the parallel activities
of LAPW1, gathers the collection data, and scatters it once again in the next
parallel activity LAPW2.

In the remainder of this section, we comparatively analyse the three heuris-
tic scheduling algorithms that we developed applied on the DAG generated
after the second conversion step (see Figure 7.7(b)) based on two metrics:
the predicted workflow makespan as the optimisation objective function, and
the scheduling time (i.e. time spent in the heuristic algorithm to compute the
schedule). We applied the genetic algorithm on a population of 100 chromo-
somes transformed in 20 generations, which was enough to converge to good
results in a reasonable scheduling time. We fixed the probability of crossover to
0.25 and the mutation rate to 0.01. We also compare the full-ahead scheduling
with the layered partitioning strategy described in Section 7.2.3. We applied
our Scheduler and the underlying algorithms in two different scenarios:

1. without performance prediction meaning that we do not provide the Sched-
uler with any predictions about the execution times of the workflow ac-
tivities. In this case, the Scheduler assumes that all activities have equal
execution times on all computer architectures available in our Grid;

2. with performance prediction meaning that we provide the Scheduler with
prediction information, for example using the techniques that we presented
in Sections 6.1.2 and 6.3.1. The predictions are provided to the Scheduler
in a two-dimensional array containing the execution time of each activity
type on each processor architecture available in our Grid.

We performed the experiments on seven heterogeneous Grid sites of the Aus-
trian Grid [2] infrastructure illustrated in Table 7.2, aggregating 116 proces-
sors in total.

Figure 7.9(a) shows that the results when using performance prediction are
in the best case nearly twice better than those achieved without performance
prediction. Performance estimates are clearly important in heterogeneous Grid
environments, even if they are not highly accurate. Further, we can notice that
the HEFT algorithm produces better results than the other algorithms. More

Site Architecture Size Processor Gigahertz Location

agrid NOW, Fast Ethernet 20 Pentium 4 1.8 Innsbruck
hydra COW, Fast Ethernet 16 AMD 2000 1.6 Linz
agrid1 NOW, Fast Ethernet, 16 Pentium 4 1.8 Innsbruck

altix1.jku ccNUMA SGI Altix 3000 Itanium 2 1.6 16 Innsbruck
altix1.uibk ccNUMA, SGI Altix 350 16 Itanium 2 1.6 Linz
schafberg ccNUMA, SGI Altix 350 16 Itanium 2 1.6 Salzburg
gescher COW, Gigabit Ethernet 16 Pentium 4 3 Vienna

Table 7.2. The Austrian Grid testbed for scheduling experiments.

230 7 Scientific Grid Workflows

precisely, the predicted makespan of the workflow is 17% shorter than the
one produced by the genetic algorithm and 21% shorter than the myopic one.
The simple matchmaking solution applied by the myopic algorithm appears
to be insufficient for large and complex workflows and produces the worst
results. The genetic algorithm needs two orders of magnitude longer time to
converge to good solutions, however, this is still negligible compared to the
execution time of real-world workflow problem cases. In case of scheduling
without performance guidance, the search space has a more regular shape
and the genetic algorithm performs equally good (or even better) than the
other two algorithms. Additionally, we performed a three-layer partitioning
of the workflow and incrementally scheduled each partition using the HEFT
algorithm. The results obtained using this method were almost identical as for
the entire workflow scheduling strategy due to the symmetry in the workflow
structure while the overhead of the scheduling heuristic is lower.

7.2.5 Invmod

Invmod [178] is a hydrological application designed at the University of Inns-
bruck for calibration of parameters of the WaSiM tool developed at the Swiss
Federal Institute of Technology Zurich. Invmod uses the Levenberg-Marquardt
algorithm to minimise the least squares of the differences between the mea-
sured and the simulated runoff for a determined time period. We re-engineered
the monolithic Invmod application into a Grid-enabled scientific workflow con-
sisting of two levels of parallelism as depicted Figure 7.10(a):

1. the calibration of parameters is calculated separately for each value using
multiple, so called, parallel random runs modeled as workflow (outermost)
parallel loos;

2. for each optimisation step represented by an inner sequential loop iter-
ation, all parameters are simultaneously changed using a nested parallel
loop construct and the goal function is separately calculated.

The number of inner loop iterations is variable and depends on the actual
convergence of the optimisation process, however, it is usually equal to the
input maximum iteration number.

The Invmod workflow is a common case of strongly imbalanced workflows
in which one of the outermost parallel loop iterations is significantly longer
than the others due to the fact that the number of inner sequential loop
iterations significantly differs. In our case, the converted DAG consists of 100
parallel iterations, one of which contains 20 sequential iterations of the inner
optimisation loop, while the other 99 iterations only contain 10 optimisation
iterations each (see Figure 7.10(b)). This means that one parallel iteration
needs approximately approximately twice the execution time of the others.
We performed the scheduling experiments on the same Grid testbed depicted
in Table 7.2, with and without performance prediction information as for the
WIEN2k workflow.

7.2 Scheduler 231

0

500

1000

1500

2000

2500

Genetic
algorithm

Myopic
algorithm

HEFT HEFT, part.
depth 3

Scheduling Algorithms

M
ak

es
pa

n
[s

ec
.]

without performance prediction with performance prediction

(a) Execution time.

0

100

200

300

400

500

600

700

Genetic
algorithm

Myopic
algorithm

HEFT HEFT, part.
depth 3

Scheduling Algorithms

Sc
he

du
lin

g
Ti

m
e

[s
ec

.]

(b) Scheduling time.

Fig. 7.9. The WIEN2k scheduling results.

The experimental results for the Invmod workflow illustrated in Fig-
ure 7.11(a) explain how each of the three algorithms deals with such strongly
imbalanced workflow structures. As expected, the myopic algorithm provides
the worst results which are approximately 32% worse than HEFT. The ge-
netic algorithm produces quite good results, however, worse than HEFT since
it does not consider in the optimisation process the execution order of parallel
activities scheduled on same processor. In addition, we applied incremental
scheduling using with 10, 20, and 30 partitioning layers and compared the
results against the full-ahead workflow scheduling consisting of 44 layers. For
such strongly imbalanced workflows, the activities belonging to workflow ex-
ecution paths that are much longer than the critical schedule path (see Defi-
nition 6.8 in Section 6.1.2) should be given priority which is well handled by
the entire workflow scheduling strategy based on optimisation heuristics like

232 7 Scientific Grid Workflows

compute_params

rand_runs

find_best

. . .

wasim_a

wasim_b2c

wasim_d

no_params

converged

wasim_b wasim_b. . .

wasim_a

wasim_b2c

wasim_d

no_params

converged

wasim_b wasim_b. . .

(a) Original workflow.

100

(b) Converted DAG.

Fig. 7.10. The Invmod scientific workflow.

7.2 Scheduler 233

0

10000

20000

30000

40000

50000

60000

Genetic
algorithm

Myopic
algorithm

HEFT HEFT,
part.

depth 30

HEFT,
part.

depth 20

HEFT,
part.

depth 10

Scheduling Algorithms

M
ak

es
pa

n
[s

ec
.]

without performance prediction with performance prediction

(a) Execution time in heterogeneous environment.

0

100

200

300

400

500

600

700

800

900

Genetic
algorithm

Myopic
algorithm

HEFT HEFT,
part.

depth 30

HEFT,
part.

depth 20

HEFT,
part.

depth 10

Scheduling Algorithms

Sc
he

du
lin

g
Ti

m
e

[s
ec

.]

(b) Scheduling time in heterogeneous environment.

0

5000

10000

15000

20000

25000

30000

35000

40000

Genetic
Algorithm

Myopic
algorithm

HEFT HEFT,
part.

depth 30

HEFT,
part.

depth 20

HEFT,
part.

depth 10
Scheduling Algorithms

M
ak

es
pa

n
[s

ec
.]

without performance prediction with performance prediction

(c) Execution time in homogeneous environment.

Fig. 7.11. The Invmod scheduling results.

234 7 Scientific Grid Workflows

HEFT and genetic algorithm. Therefore, scheduling strategies based workflow
partitioning deliver worse results than those based on full workflow analysis,
although their results are still better than the one found by the myopic algo-
rithm. The genetic algorithm requires again two orders of magnitude longer
than the others to converge to good solutions (see Figure 7.11(b)). Perfor-
mance prediction is again extremely beneficial for achieving good schedules
in heterogeneous Grid environments. Figure 7.11(c) presents the execution
results of the Invmod workflow in a homogeneous environment consisting of
three nearly identical Grid sites. As expected, in this case there is almost no
difference between scheduling with and without performance prediction since
the execution on each cluster needs relatively the same amount of time. Again,
the HEFT algorithm produces the best results which are 24% better than the
myopic one.

7.3 Enactment Engine

In order to support reliable and high performance execution of scientific work-
flows in dynamic Grid environments, we developed an Enactment Engine ser-
vice [59, 60, 61] based on a distributed service-oriented architecture organised
in a master-slave communication model which includes three types of services:

1. one master engine receives the workflow representation compliant with
the model described in Section 7.1 and interacts with the Scheduler for
appropriate mapping onto the available Grid resources. The master engine
monitors the execution of the entire workflow and the state of the slave
engines;

2. several slave engines, usually one for each Grid site, monitor the execution
of individual workflow partitions and report to the master whenever indi-
vidual activities change their state or when the partitions produce some
intermediate output data relevant to other partitions or to the overall
execution;

3. if the master engine crashes, a random backup engine (chosen by the
master beforehand) becomes the master and immediately selects another
backup slave randomly.

Such a distributed architecture increases the fault tolerance of the engine and
offers improved scalability through decentralised orchestration of large num-
bers of activities characteristic to scientific workflows. Every engine consists
of the following modules:

1. workflow partitioning module (see Section 7.3.1) resides within the master
engine and distributes the workflow into smaller partitions that can be
executed more efficiently and with smaller overheads by individual slave
engines, usually one for each Grid site;

2. control flow management module executes the workflow activities accord-
ing to the control precedence relation;

7.3 Enactment Engine 235

3. data flow management module manages the efficient transfer of complex
data dependencies between activities and partitions according to the data
precedence relation, including advanced collection management and opti-
misations through archiving and compression of multiple files;

4. fault management module resides in both master and slave engines and
handles different runtime failures through appropriate recovery strategies
like retry, checkpointing, or replication;

5. steering module [146] provides support within the slave engines for work-
flow runtime adaptations to cope with situations when the execution no
longer follows the original optimised plan computed by the Scheduler. Ad-
ditionally, it also handles the case of special workflows whose structure is
statically unknown or may change during the execution.

We perform the optimised and fault tolerant execution of a workflow in a
four phase procedure, as follows:

1. in the first step, the (XML-based) workflow representation is delivered to
the Scheduler for appropriate mapping onto the Grid resources;

2. once the concrete workflow schedule is received, the master engine starts
partitioning the workflow, then performs control and data flow optimisa-
tions which transform and simplify the workflow for a light-weight execu-
tion with reduced latencies and data transfer overheads;

3. after all these optimisations are performed, the master engine sends each
partition to a slave engine for execution;

4. during runtime, the workflow execution is dynamically improved by the
steering module.

7.3.1 Workflow Partitioning

The basis in our approach for distributed execution of scientific workflow is
the workflow partitioning which needs to be performed such that the com-
munication between the master and the slave engines that coordinate the
individual partitions is minimised. Determining the number of partitions of a
set of n numbers is a classical problem of combinatorial mathematics called
the n-th Bell number which is an NP-complete problem. Some related par-
titioning approaches were already proposed to solve this problem although
their algorithms have different goals [15, 53].

Definition 7.12. We define a workflow partition as the largest sub-workflow
WP = (NodesP,C-edgesP,D-edgesP) with the following properties:

1. all activities are scheduled on the same Grid site:

S (N1) = S (N2) , ∀ N,N2 ∈ NodesP;

2. there must be no control flow and data flow dependencies to / from activ-
ities that have predecessors / successors within the partition:

pred(N) = ∅ ∨ pred(N) ∈ NodesP, ∀ N ∈ NodesP.

236 7 Scientific Grid Workflows

The goal of the partitioning algorithm presented in this section is to generate
a partitioned workflow WP = (NodesP,C-edgesP,D-edgesP) from a workflow
W = (Nodes,C-edges,D-edges), where:

NodesP = {P1, . . . ,Pn}

is the set of partitions that fulfil Definition 7.12, and:

n⋂
i=1

Pi = ∅ ∧
n⋃

i=1

Pi = Nodes,

and n is minimum. We base our partitioning algorithm on graph transforma-
tion theory [16] as the formal background to rigourously express it. We define
several rules for defining valid workflow partitions that aim to decrease the
complexity of the algorithm (to polynomial) and create the set of cooperating
workflow partitions.

Let (W,R) denote a workflow transformation system, where R denotes
the set of graph transformation rules. We approach the workflow partitioning
problem using a four step transformation sequence:

(
W RCF=⇒ WCF , W RDF=⇒ WDF

) RM1=⇒ W ′ RM2=⇒ WP,

where:
WCF = (NodesCF ,C-edgesCF ,D-edgesCF) ,
WDF = (NodesDF ,C-edgesDF ,D-edgesDF) ,
W ′ =

(
Nodes′,C-edges′,D-edges′

)
,

and WP are partition sets generated using different transformation rules that
preserve the control and data flow dependencies of the original workflow W.
We omit the workflow input and output data ports for clarity reasons since
they are irrelevant to our partitioning algorithm.

Step 1: W RCF=⇒ WCF .

Partition the original workflow according to three control flow dependency
rules RCF :

1. every activity of the workflow must belong to exactly one partition:

∀ N ∈ Nodes, ∃ P ∈ NodesCF ∧ N ∈ P ∧ N /∈ P′ ∧ ∀ P′ ∈ NodesCF \P;

2. every partition is one composite or atomic activity. Currently we perform
this step by using additional information provided by the user in the XML-
based workflow representation [70] and mapping one composite activity
(e.g. parallel activity consisting of a set of independent atomic activities)
to one partition;

7.3 Enactment Engine 237

3. no control flow dependencies between intermediate activities in different
partitions are allowed:

∀ N1 ∈ P1 ∈ NodesCF ∧ (pred (N1) ∈ P1 ∨ succ (N1) ∈ P1) ∧
(� (N1,N2) ∈ C-edgesCF ∧ � (N2,N1) ∈ C-edgesCF ,

∀ N2 ∈ P2 ∈ NodesCF) ,

where pred and succ denote the predecessor, respectively the successor of
an activity in the workflow;

4. the number of activities inside one composite activity must be more than
the average processor number on one Grid site. We introduce this rule to
avoid too fine grained partitions in the workflow that would start slave
engines on sites with little workload.

For example, in Figure 7.12(a) we partition all atomic activities of the com-
posite activities Nif , Npar, and Nseq into one partition, respectively, which
produces the following control flow partitioning:

NodesCF = {{N1} , {N2} , {N3, . . . ,N6} , {N7, . . . ,N10} , {N11} , {N12,N13}} .

Step 2: W RDF=⇒ WDF .

Partition the original workflow according to three data flow dependency rules
RDF :

1. each activity of the workflow must belong to exactly one partition:

∀ N ∈ Nodes, ∃ P ∈ NodesDF ∧ N ∈ P ∧ N /∈ P′, ∀ P′ ∈ NodesDF \ P;

2. the data dependencies between activities scheduled on the same Grid site
are eliminated:

D-edgesDF = D-edges\ (N1,N2,D-port) , ∀ N1,N2 ∈ Nodes ∧ SN1 = SN2 ;

3. activities scheduled on the same Grid site belong to the same partition:

∀ N1 ∈ P ∈ WDF ∧ ∀ N2 ∈ P ∧ SN1 = SN2 .

Figure 7.12(b) displays the result of the data flow partitioning according to
the schedule of the workflow activities:

NodesDF = {{N1,N2} , {N3, . . . ,N6,N13} , {N7, . . . ,N11,N12}} .

238 7 Scientific Grid Workflows

NloopS(N7)=M3

S(N8)=M3 S(N9)=M3

P1

P2

P6

P5

Nif

S(N10)=M3

Nseq

P4

P3

S(N3)=M2

S(N6)=M2

S(N4)=M2 S(N5)=M2

S(N2)=M1

S(N11)=M3

S(N12)=M3

S(N13)=M2

S(N1)=M1

(a) Control flow partitioning (RCF).

S(N1)=M1

S(N2)=M1

S(N3)=M2

S(N6)=M2

S(N12)=M3

S(N7)=M3

S(N10)=M3

S(N11)=M3

P1

P2

P3

S(N13)=M2

S(N4)=M2 S(N5)=M2

S(N8)=M3 S(N9)=M3

(b) Data flow partitioning (RDF).

P4

P3

S(N1)=M1 P1

P2

P6

P7

S(N2)=M1

S(N3)=M2

S(N6)=M2

S(N7)=M3

S(N11)=M3

S(N10)=M3

S(N8)=M3 S(N9)=M3

S(N4)=M2 S(N5)=M2

S(N12)=M3

S(N13)=M2

(c) Partition merge (RM1).

P2

Nif

P6

P5

P1

S(N13)=M2

S(N1)=M1

P3

S(N2)=M1

S(N3)=M2

S(N6)=M2

S(N4)=M2 S(N5)=M2

S(N7)=M3

S(N11)=M3 P4

S(N10)=M3

Nloop

S(N8)=M3 S(N9)=M3

S(N12)=M3

(d) Partitioned workflow (RM2).

Fig. 7.12. A workflow partitioning example.

Step 3: (WCF ,WDF) RM1=⇒ W ′.

Merge the two sets NodesCF and NodesDF of control and data flow-based
partitions computed in the previous two steps into one partition set, as follows:

W ′ =
⋃

∀Nodes1∈NodesCF∀Nodes2∈NodesDF

{Nodes1 ∩ Nodes2} ,

while preserving the control and data flow dependencies and the partitioning
goals formally described in the beginning. For our example in Figure 7.12(c)
we obtain:

Nodes′ = {{N1} , {N2} , {N3, . . . ,N6} , {N7, . . . ,N10} , {N11} , {N12} , {N13}} .

7.3 Enactment Engine 239

Step 4: W ′ RM2=⇒ WP.

Since the partitioning may have been done too fine grain, we merge the par-
titions connected through control flow dependencies using the following two
merge rules:

1. merge the partitions that are connected through control flow dependencies
but have no data flow dependencies (i.e. they are scheduled on the same
site):

NodesP =
⋃

∀Pi �=Pj∈W′
{{Pi ∪ Pj} \ {Pi} \ {Pj} | ∀ N1 ∈ Pi ∧

∀ N2 ∈ Pj ∧ � (N1,N2,D-port) ∈ D-edges ∧ (Pi,Pj) ∈ C-edges′
}

;

2. in the final partition, there must be no control and data flow dependencies
to / from activities that have predecessors / successors within the parti-
tions. This is achieved by iteratively applying the following formula within
fixed point algorithm until nothing changes anymore and the largest par-
titions are achieved:

NodesP =
⋃

∀Pi �=Pj∈W′
{{Pi ∪ Pj} \ {Pi} \ {Pj} |

¬ (
(Pi,Pj ,D-port) ∈ D-edges′

) ∧ (
(Pi,Pj) ∈ C-edges′

) ∧((
� Px
= Pj ∈ W ′ | (

(Pi,Px) ∈ C-edges′
)) ∧(

� Px
= Pi ∈ W ′ | (
(Px,Pj) ∈ C-edges′

)))}
.

Therefore,

NodesP = {{N1} , {N2} , {N3, . . . ,N6} , {N7, . . . ,N11} , {N12} , {N13}} .

This partitioning of a workflow helps the slave engines execute the work-
flow partitions independently with little asynchronous communication among
themselves. The workflow partitioning also contributes to the reduction of the
latency and coordination overheads of large numbers of activities characteris-
tic to our scientific workflows.

7.3.2 Control Flow Management

Our experience in running real-world applications in the Austrian Grid envi-
ronment revealed that executing one computational activity on a remote Grid
site according to the model that we introduced in Section 2.6.3 contains in av-
erage about 10−20 seconds of overhead mainly due to mutual authentication
latency and polling for job termination. This overhead may be significantly
larger if the access to Grid sites is performed through local job management

240 7 Scientific Grid Workflows

systems and, therefore, becomes critical for large scientific workflows com-
prising hundreds to thousands of activities. The objective of the control flow
management module is to simplify and reduce the workflow structure and size
by merging atomic activities into larger aggregate ones that can be executed
as one single remote job submission on a Grid site, which reduces the overall
latencies and decreases the complexity of large and complex workflows.

The control flow management module receives a workflow partition P and
performs a transformation that produces a new partition PCF that merges the
activities linked through control flow dependencies but with no data depen-
dencies (i.e. since they are scheduled on the same Grid site) into composite
activities that can be executed as an atomic unit of work (i.e. remote GRAM
job submission):

PCF = {CN1, . . . , CNn} ,

where:

CNi = {N} ∨ (∀ N1 ∈ CNi, ∃ N2 ∈ CNi ∧
((N1,N2) ∈ C-edgesP ∨ (N2,N1) ∈ C-edgesP) ∧
� N3 ∈ CNi ∧ ((N1,N3,D-port) ∈ D-edgesP ∨

(N3,N1,D-port) ∈ D-edgesP)) , ∀ i ∈ [1..n].

Figure 7.13(a) illustrates one typical static control flow optimisation in a
workflow consisting of activities A1, . . . , An and B1, . . . , Bn, where Ai and Bi

are linked through a direct control flow dependency and were scheduled on the
same Grid site, which means that any eventual data dependency was elimi-
nated in the second step of the partitioning algorithm. Figure 7.13(b) displays
the analysis of the control flow optimisation which groups activities Ai and Bi

in one single composite activity that simplifies the workflow and, therefore,
reduces the job submission latencies to half in this particular example.

(a) Original workflow.

A1

Npar

A2 An

B1 B2 Bn

CN1 CN2 CNn

(b) Workflow after control flow op-
timisation.

Fig. 7.13. A control flow optimisation example.

7.3 Enactment Engine 241

7.3.3 Data Flow Management

An important task of the Enactment Engine is to automatically track and
resolve dynamic and statically unknown data dependencies between activi-
ties. Depending on their type, data ports may map at runtime either to data
files referred through (GridFTP or GASS-based) URLs, or to objects corre-
sponding to abstract data types like integer, float, or string. Additionally, the
Enactment Engine transparently supports all five collection communication
patterns introduced in Section 7.1.5 which we did not encounter in related
workflow management systems [10, 65, 136, 1, 184].

Similar to remote job submissions, GridFTP-based authenticated file
transfers in Grid environments exhibit latencies of about 5−10 seconds which
is rather critical in case of a large number of small files produced by the real-
world applications that we use as case study. To address this problem, the
data flow management module reorganises first the input and output of the
partitions and composite activities, analyses the data dependencies between
all activities, groups them according to all dependencies involving the same
source and destination Grid sites, and generates a file transfer activity of a
single compressed archive whenever the source and destination sites are dif-
ferent:

D-edgesP =
⋃

∀P1,P2∈NodesP

{(P1,P2,D-portarchive)} ,

where:
D-portarchive =

⋃
∀ (N1,N2,D-port)∈D-edges

∧N1∈P1 ∧N2∈P2

{D-port}

is a compressed archive of all data dependencies between partitions P1 and
P2 (typically instantiated during execution by files).

Figure 7.14(a) presents a typical example in which activity B collects the
output data from a large number of parallel activities A1, . . . , An. First of all,
the data flow analysis packages the data output ports of all activities belong-
ing to the same partition (i.e. scheduled on the same site – see Figure 7.14(b)).
Afterwards, one single (GridFTP-based) file transfer activity is generated be-
tween the partitions that are scheduled on different sites which reduces the
number of file transfers from n to k − 1 in this example, where k � n (see
Figure 7.14(c)).

7.3.4 Virtual Single Execution Environment

Certain scientific workflow applications are characterised by a large (hundreds
to thousands) number of activities with complex data dependencies which
are relatively small in size. In such cases, the overhead of communication is
dominated by latencies for sending individual small files where the effective
data transfer is negligible. To handle this situation, we propose a new data flow
optimisation technique called Virtual Single Execution Environment (VSEE)

242 7 Scientific Grid Workflows

Npar

B

A1 A2 A3 An

(a) Original workflow. (b) Data flow optimisation analysis.

(c) Workflow after data flow optimisation.

Fig. 7.14. A data flow optimisation example.

which replaces the data dependencies between activities with the full data
environment, recursively defined for a partition P as follows:

VP =
⋃

∀ (P′,P,D-port)∈D-edgesP

VP′
⋃

∀ (P,P′′,D-port)∈D-edgesP

{D-port} .

Clearly, the following property holds:

∃ (
P′,P,D-port

) ∈ D-edgesP ⇐⇒ VP′ ⊂ VP.

Upon executing a workflow partition on a Grid site, each slave engine
automatically creates and removes one working directory that represents its
execution environment. The VSEE mechanism transforms complex data de-
pendencies between activities into one environment dependency between par-
titions that is packaged and transferred at runtime as one single data transfer
activity. VSEE, therefore, noticeably reduces the latency and the number of
data transfers for compute intensive Grid applications that have large amounts
of small sized data dependencies. The VSEE mechanism can also reduce the
overhead of activity migration upon workflow steering that we will formally
describe in Section 7.3.5 and practically experiment in Section 7.3.7. Another
benefit of using VSEE is the fact that specifying large amounts (tens to hun-
dreds) of input and output data ports between activities (which is often the

7.3 Enactment Engine 243

kgen

LAPW0

LAPW1 LAPW1 LAPW1

LAPW2_FERMI

LAPW2 LAPW2 LAPW2

SUMPARA

LCORE

MIXER

Stage in

Stage Out

Converged

P1

P2 P3

P4
P5 P6

P7

(a) Original partitioned data flow.

kgen

LAPW0

LAPW1 LAPW1 LAPW1

LAPW2_FERMI

LAPW2 LAPW2 LAPW2

SUMPARA

LCORE

MIXER

Stage in

Stage Out

Converged

V0

V1

V2 V3

V4
V5 V6

V7

Data flow
Control flow
Activity
Partition
VSEE

(b) Optimised VSEE data flow.

Fig. 7.15. A VSEE example.

case for scientific workflows) can be painful and error prone for the end-user.
With this technique, the users can assume that activities have one single ag-
gregated data dependency to their predecessors which eliminates the need to
specify all fine grained logical data ports explicitly. This simplification shields
the user from the complexity of the workflow definition and it gives to the
scientists from other areas a more friendly interface to Grid computing.

Figure 7.15 illustrates the WIEN2k workflow that we introduced in Sec-
tion 6.3.1 scheduled on three Grid sites {M1,M2,M3}. First of all, the workflow
is split into seven partitions:

NodesP =
7⋃

i=1

Pi,

based on the algorithm presented in Section 7.3.1 (see Figure 7.15(a)). Then,
the data flow between partitions is optimised according to the VSEE-based
relationships depicted in Table 7.2(a). For example, transferring data between
partitions only according to the data flow dependencies requires P6 receive
the data from:

Vin ∪ V1 ∪ V2 ∪ V3 ∪ V4 = V4,

since Vin ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V4. Table 7.2(b) displays the final result of this
VSEE data flow optimisation process. For certain compute intensive applica-
tions characterised by large numbers of small data dependencies like WIEN2k,

244 7 Scientific Grid Workflows

(a) VSEE relationships.

RV V1 V2 V3 V4 V5 V6 V7 Vout

Vin ⊂ ⊂ ⊂ ⊂ ⊂ ⊂
V1 – ⊆ ⊂ ⊆ ⊂ ⊂ ⊂
V2 – ⊆ ⊂ ⊂
V3 – ⊂ ⊆ ⊂
V4 – ⊂ ⊂ ⊂
V5 – ⊂
V6 – ⊆
V7 ⊂ – ⊃

(b) Minimum VSEE transfer set.

Transfer P1 P2 P3 P4 P5 P6 P7 Output

Vin �
V1 �
V2

V3 �
V4 � �
V5 �
V6

V7 � �

Table 7.3. The VSEE results for the WIEN2k workflow.

the VSEE mechanism can drastically decrease the number of file transfers (up
to orders of magnitude) as we will experimentally illustrate in Section 7.3.7.

7.3.5 Workflow Steering

There may occur many external factors that affect the execution of large
workflows in dynamic Grid environments which no longer follows the origi-
nal plan computed by the Scheduler. Such unpredictable factors may include
unpredictable queuing times, external load on processors (e.g. on Grid sites
that also serve as student workstation laboratories in our real Grid environ-
ment), unpredictable availability of processors on workstation networks (e.g.
if a student shuts down a machine or reboots it in Windows operating system
mode), jobs belonging to other users on parallel machines, congested networks,
or simply inaccurate prediction information. Moreover, we often encountered
in our real Grid environment sites that offer a reduced capacity for certain re-
sources, for example small number of input and output nodes that only allow a
limited number of concurrent file transfers, otherwise generate a denial of ser-
vice attack. The steering module of the Enactment Engine aims to minimise
the losses upon to such unpredictable situations that violate the optimised
static mapping computed by the Scheduler through appropriate rescheduling
techniques.

For example, executing such large numbers of parallel activities in dynamic
Grid environments often produces a load imbalance that leaves some of the
Grid sites idle, while others are overloaded with activities waiting in the queue.
To handle this situation, the Enactment Engine regularly checks the load
of available Grid sites based on the number of activities queued and, if an
uneven distribution is detected (using predicted execution time information),
it selects some of the queued activities for migration and replicates them to
the less loaded sites (e.g. with free processors). Additionally, the engine must
also replicate the necessary input files as part of a data flow optimisation
process.

7.3 Enactment Engine 245

Rescheduling Events

The steering module of the Enactment Engine continuously monitors the
workflow execution and triggers appropriate rescheduling events whenever any
of the following situations occur:

• cardinality port value change which implies modifications in the workflow
shape, in particular in the size of parallel loops (see Section 7.1.5 for the
formal definition and Section 7.2.4 for a real-world example);

• prediction change of various workflow characteristics based on new ex-
ecution performance data available, in particular branch probabilities in
conditional activities, number of iterations in sequential and parallel loops,
or more accurate execution time estimations of computational activities;

• resource change, in particular in the availability of Grid sites (i.e. number
of processors available) where workflow activities are scheduled, or when
new powerful parallel computers become available;

• performance contract violation [146] which are caused by workflow execu-
tions that no longer follow the original optimised plan computed by the
Scheduler.

Definition 7.13. Let N be a submitted activity, WN its underlying work as-
signed (i.e. floating point operations for CA activities, file size for DA activi-
ties), TSN

N its estimated execution time, and:

start(N) = end(N) − TSN

N

its start timestamp, where the end timestamp end(N) was defined in Sec-
tion 6.1.2 (see Definition 6.7). We define the performance contract [185] of
an activity N at time instance t, such that start(N) ≤ t < end(N), as:

PC (N,SN, t) =
WN

WN(t) · TSN

N

· (t − start(N)),

where WN (t) is the work completed by activity N in the interval [start(N), t].

The steering module of the Enactment Engine triggers a rescheduling event
for activity N at time instance t whenever:

PC (N,SN, t) > fN,

where fN is the predefined performance contract elapse factor of activity N.
Currently the value of the performance contract elapse factor fN needs to
be statically defined by the user for each activity (as activity properties in
the workflow specification [70]) that represents a certain percentage from its
predicted activity execution time TSN

N . We provide two options for monitor-
ing the amount of work WN (t) performed by an activity N based on online
performance analysis sensors that we developed:

246 7 Scientific Grid Workflows

1. source code-based using the ZEN event directive specified in Section 3.2.12
(see Chapter 3);

2. binary code-based using the dynamic instrumentation technology de-
scribed in Section 5.4.1 (see Chapter 5);

After rescheduling, the workflow activities are restarted or resumed from the
last checkpoint, if available [122, 166] (see Section 7.3.6).

Steering Algorithm

The static workflow scheduling approach that we described in Section 7.2
suffers of two limitations:

1. loops are not comprised in the DAG-based workflow model used by the
Scheduler;

2. the Grid is not considered as a dynamic environment where the resources
can change runtime load and availability.

Definition 7.14. An activity N ∈ Nodes of the running workflow can be at
a certain time instance t in one of the following states: queued, running,
completed, or failed, denoted as state(N, t).

In this section we propose a simple steering algorithm depicted in Algo-
rithm 10 that is based on the repeated invocation of the static scheduling
algorithm, as informally outlined by the following execution steps [146]:

1. the algorithm receives as input a DG-based scientific workflow compliant
with the model presented in Section 7.1 (lines 1 − 2);

2. the workflow is converted into a DAG and scheduled onto the Grid using
optimisation heuristics as presented in Section 7.2 (lines 3 − 4);

3. the workflow is submitted for execution based on the initial schedule (line
5);

4. the workflow is monitored until it completes its execution (lines 6 − 14);
5. whenever one of the events presented in the previous section occur, a

rescheduling event is triggered (line 7);
6. all activities that violate their performance contract are canceled and re-

ported as failed (lines 8 − 11);
7. the workflow is converted once again based on the new runtime informa-

tion and rescheduled (lines 12 − 13).

To efficiently handle workflow rescheduling at runtime, we extended the work-
flow conversion algorithm originally presented in Algorithm 5 with a new time
axis that only considers the relevant (i.e. still to be executed) part of the work-
flow as part of the optimisation process (lines 17− 30). More specifically, the
following activities are eliminated and not considered for rescheduling (lines
26 − 27):

1. all properly running activities that fulfill their performance contract;

7.3 Enactment Engine 247

Algorithm 10 The workflow steering algorithm.
1: function steering(W, GRID)
2: W = (Nodes,C-edges,D-edges, IN-ports,OUT-ports) � Precondition

3: W ′ ← wf-converter(W,W, 0) � Workflow conversion

4: SW ← schedule(W ′) � Workflow scheduling

5: execute(SW) � Workflow execution

6: repeat
7: t ← sleep(n) � Until scheduling event

8: for all N ∈ Nodes ∧ state(N, t) = running ∧ PC (N,SN, t) > fN do
9: cancel(N) � Performance contract violation

10: state(N) ← failed
11: end for
12: W ′ ← wf-converter(W,W, t) � Runtime workflow conversion

13: SW ← schedule(W ′) � Workflow rescheduling

14: until state(N, t) = completed, ∀ N ∈ Nodes ∧ succ(N) = ∅
15: end function
16:
17: function wf-converter(Wroot,N, t)
18: if N is a Nif then
19: Wroot ← branch-expansion(Wroot,N)
20: else if N is a Nloop then
21: Wroot ← seq-loop-unrolling(Wroot,N)
22: else if N is a Npar then
23: Wroot ← par-loop-unrolling(Wroot,N)
24: else if N is a W then
25: Wroot ← wf-inlining(Wroot,N)
26: else if (state(N, t) = running ∧ PC (N,SN, t) ≤ fN) ∨

(state(N, t) = completed ∧ (� n ∈ N ∧ Parentn(N) is a Nloop)) then
27: activity-elimination(N) � Completed or properly running

28: end if
29: return Wroot

30: end function

2. all completed activities that do not have sequential loops as parents and,
therefore, will not be re-executed.

7.3.6 Fault Tolerance

Fault tolerance is sometimes called redundancy management, since one of
the nature of distributed systems is redundancy which provides means for
increased reliability. We handle failures as part of the Enactment Engine at
three levels of abstractions:

1. activity level fault tolerance or activity crash failure:
a) retry submits a computational activity multiple times on the same

Grid site until it succeeds;

248 7 Scientific Grid Workflows

b) replicate submits the same activities to different Grid sites simulta-
neously, uses the results of the one that finishes first, and cancels the
others;

2. control flow level fault tolerance:
a) checkpointing saves the state of the workflow activities and URLs to

their input and output data port instances in the Experiment Data
Repository. Full backup copies of the data port instances are not
saved;

b) migration moves an activity to a different Grid site upon performance
contract violation, as defined in Section 7.3.5. Upon migration, the
activity is resumed if an activity level checkpoint is available (see
next section), otherwise it is restarted;

3. workflow level fault tolerance:
a) alternate task uses in case of failure a different implementation of the

same activity with different implementation characteristics;
b) workflow level redundancy simultaneously launches different imple-

mentations of the same activity with different characteristics or qual-
ity of service parameters, hoping that one of the alternative jobs will
finish successfully (e.g. a parallel high performance but unreliable MPI
implementation versus a reliable but slow sequential version);

c) exception handling consists of recovery methods based on user-defined
exceptions or upon activity failures. Typical recovery methods include,
for example, stop the workflow, checkpoint the workflow, or ignore the
fault;

d) checkpointing at the workflow level saves complete backup copies of
the activity input and output data port instances in addition to control
flow level checkpointing. This method is slower but has the advantage
that the user can restore the workflow at any time and from any Grid
location.

Checkpointing

Checkpointing and recovery are fundamental techniques for saving the appli-
cation state during the normal execution and restoring the saved state after a
failure to reduce the amount of lost work. There are two traditional approaches
to checkpointing:

1. system level checkpointing saves to the disk the image of an entire oper-
ating system process, including registers, stack, code and data segments.
This is known to be a rather expensive and platform dependent process
which is very critical to apply for a large number of activities in hetero-
geneous Grid environments;

2. application level checkpointing is usually implemented within the applica-
tion source code by programmers, or is automatically added to the appli-
cation using compiler-based tools.

7.3 Enactment Engine 249

We therefore concentrate our checkpointing approach on application level
checkpointing, as a portable and more reliable approach for being applied in
heterogeneous Grid environments. Since it is not always possible to checkpoint
everything that can affect the program behaviour, it is essential to identify
what to include in a checkpoint to guarantee a successful recovery, which for
our scientific workflow model consists of:

• the state of the workflow activities;
• the state of the data dependencies.

We configure the Enactment Engine to checkpoint a workflow application
upon precise events defined, for example as part of the (XML-based) work-
flow specification through property and constraint constructs [70]. Typical
checkpointing events occur when an activity fails, after the completion of an
important number of activities (e.g. workflow phases, parallel loops, or se-
quential loop iterations), or after a user defined deadline (e.g. percentage of
the overall expected or predicted execution time). Other checkpointing events
may happen upon rescheduling certain workflow parts (see Section 7.3.5) due
to the dynamic availability of Grid resources or due to variable or statically
unknown number of activities in workflow parallel loops. Upon a checkpoint-
ing event, the control flow management module stops the workflow execution
and invokes the fault management module that saves the status and the data
flow ports into the Experiment Data Repository.

We designed and implemented a stack of three checkpointing mechanisms:

1. activity level checkpointing is based on existing system level checkpointing
tools like Condor [123] or MOSIX [14] and saves the registers, stack, and
memory segments for every individual activity running on a certain pro-
cessor. The advantage of the activity level checkpoint is that an atomic
activity can be recovered upon an internal or a system failure;

2. control flow level checkpointing saves the workflow state and (GASS and
GridFTP-based) URLs to the files that instantiate activity runtime data
ports. Checkpointing URLs rather than complete backup copies of large
data files makes the control flow level checkpointing mechanism a very fast
and light-weight mechanism. The disadvantage is that the input and out-
put data port instances remain stored on possible unsecured and volatile
file systems which makes this recovery approach appropriate only at run-
time during the same workflow execution;

3. workflow level checkpointing enhances the control flow checkpointing by
saving not only the workflow state, but also complete copies of the data
port instances available at the execution point when the checkpoint is per-
formed (see Definition 7.15). The advantage of the workflow level check-
pointing is that the execution can be restored and resumed at anytime and
from any Grid location. The disadvantage is that the checkpointing over-
head grows significantly for large files that instantiate the data ports and
is therefore less suitable for immediate runtime recovery. This approach

250 7 Scientific Grid Workflows

is more appropriate for resuming the execution at a later time, possibly
with a different schedule or within a different experimental context.

Definition 7.15. Let W = (Nodes,C-edges,D-edges, IN-ports,OUT-ports) be
a workflow application. We define a workflow checkpoint at the time instance
t as a set of tuples:

CKPT(W, t) =

⎛
⎜⎜⎜⎜⎜⎝

⋃
∀ (N1,N2,D-port)∈D-edges∧

state(N1,t)=completed∧
state(N2,t) �=completed

(N2, state (N2, t) ,D-port) , t

⎞
⎟⎟⎟⎟⎟⎠

.

As we can notice, there are multiple options for the checkpointed state
state (N2) of a not yet completed activity N2, where the activity state was
defined in Section 7.3.5 (see Definition 7.14). We propose three solutions to
this problem:

1. checkpoint immediately and regard the activity as running;
2. wait for the activity to terminate and set its state to completed if the

execution was successful, otherwise set the state to failed. Both solutions
are not obviously perfect and, therefore, we propose a third option that
uses the predicted execution time of the job, as follows:

3. delay the checkpoint for a significantly shorter amount of time, based on
the following parameters:
a) predicted execution time TN is the time that activity N is expected to

execute, computed using analytical models and regression techniques,
as presented in Sections 6.1.2 and 6.3.1;

b) checkpoint deadline CD is a predefined maximum time the checkpoint
can be delayed, usually equal to the overhead time required for per-
forming the entire checkpoint;

c) activity elapsed time tN is the activity execution time from the its
start until the checkpoint time t.

We compute the state of an activity N using the following formula:

state(N, t) =
{

running, TN − CD ≥ tN;
completed, TN − CD < tN.

This solution saves the checkpointing overhead and lets the checkpoint
complete within a shorter time frame.

Another important factor that affects the overhead of the workflow check-
pointing is the size of the data port instances to be checkpointed. We propose
two solutions to this problem:

1. output data checkpointing stores all the output files of the executed activ-
ities that were not previously checkpointed;

7.3 Enactment Engine 251

N1

N2 N3

N4

N5

D-port12 D-port13

D-port24 D-port34

D-port45

D-port14
D-port15

CKPT1

CKPT2

CKPT3

Fig. 7.16. A workflow checkpointing example.

Output data checkpointing Input data checkpointing

CKPT1 D-port12, D-port13, D-port14 D-port12, D-port13, D-port14
CKPT2 D-port24, D-port34 D-port14, D-port24, D-port34
CKPT3 D-port45 D-port15, D-port45

Table 7.4. The input and output data checkpointing for the workflow example
depicted in Figure 7.16.

2. input data checkpointing stores all the input files of the activities not yet
executed that will be used later in the execution.

For a centralised Enactment Engine, the input data checkpointing is obviously
the better choice because it ignores all the data files that will not be used which
saves significant data transfer overhead. In case of a distributed architecture,
the slave engines do not know which of the current data files will be used later
and, therefore, must use the output checkpointing mechanism. The advantage,
however, is that the checkpoint is performed locally by each slave engine which
saves important network file transfer overhead. Table 7.4 shows the difference
between the two checkpointing approaches for the three checkpoints defined
on the sample workflow depicted in Figure 7.16.

7.3.7 WIEN2k Execution Experiments

We use the WIEN2k application that we introduced in Section 6.3.1 for vali-
dating the design and functionality of the Enactment Engine with a problem
size that produces at runtime 250 parallel k-points which means a total of
over 500 workflow activities (see Figures 6.6 and 7.15). The workflow execu-
tion experiments presented in this section logically follow the initial scheduling
step that we analysed for this application in Section 7.2.4. We executed the

252 7 Scientific Grid Workflows

Rank Site Architecture Size Processor GHz Job Location
Mgr.

1 altix1.jku ccNUMA, SGI Altix 3000 16 Itanium 2 1.6 Fork Linz
2 altix1.uibk ccNUMA, SGI Altix 350 16 Itanium 2 1.6 Fork Innsbruck
3 schafberg ccNUMA, SGI Altix 350 16 Itanium 2 1.6 Fork Salzburg
4 agrid1 NOW, Fast Ethernet 16 Pentium 4 1.8 PBS Innsbruck
5 arch19 NOW, Fast Ethernet 20 Pentium 4 1.8 PBS Innsbruck
6 arch21 NOW, Fast Ethernet 20 Pentium 4 1.8 PBS Innsbruck

Table 7.5. The Austrian Grid testbed for WIEN2k execution experiments.

WIEN2k workflow in a subset of the Austrian Grid infrastructure [2] consist-
ing of a number of parallel computers and workstation networks accessible
through the Globus toolkit and local job managers as separate Grid sites.
We first executed the workflow application on the fastest site available (i.e.
altix1.jku in Linz) that gives us the indication of what can be achieved for
this application by using only local compute resources. Then we incremen-
tally added the next fastest sites for this application as indicated by the rank
column in Table 7.5 and observed the benefits or losses obtained by executing
the same problem size in a larger Grid environment. We compare in these
experiments the performance delivered by three of our workflow enactment
techniques: control and data flow optimisation, control and data flow optimi-
sation plus dynamic steering, and VSEE.

Figure 7.17(a) presents the number of WIEN2k partitions computed by
the partitioning algorithm for each Grid site configuration. The number of
partitions depends on the workflow structure and the execution plan computed
by the Scheduler and is proportional with the number of sites used for each
execution. Figure 7.17(b) shows the execution times for running the same
WIEN2k problem on different Grid size configurations ranging from one to
six aggregated sites. Similarly, Figure 7.17(c) displays the speedup computed
as the ratio between the Grid execution time on multiple distributed sites
and the execution time on the fastest local site available (altix1.jku in Linz).
Without any optimisation, the performance and the speedup deteriorate with
the increase in the number of Grid sites used for scheduling and running
the workflow. With optimisation and steering, the WIEN2k execution time
improves because of the simplified data flow and balanced execution of the
LAPW1 and LAPW2 parallel loops. We exhibit, however, a slow down from
five to six Grid sites using control and data flow optimisation because of the
increased communication time across six distributed sites.

Figures 7.18(a) and 7.18(b) show that the number of file transfers, respec-
tively remote job submissions, are considerably reduced when optimisation
is applied which explains the performance results obtained. Figure 7.18(c)
displays the average GridFTP and GRAM latencies experienced in our runs,
measured for each job from the submission time until it becomes active, which
ranges from one to 18 seconds when a local queuing system is used underneath.

7.3 Enactment Engine 253

Figure 7.19(a) shows that the size of transferred data under VSEE is obviously
larger than in the other cases, however, VSEE offers the biggest execution im-
provement since it reduces the number of file transfers by three orders of
magnitude that drastically reduces the latencies (i.e. mutual authentication
to the GridFTP service). The steering improvement is due to several external
jobs that we submitted to the fastest Grid site which caused several LAPW1
and LAPW2 activities wait in the queue. The consequence is an increased
load imbalance in the execution of the LAPW1 and LAPW2 parallel loops,
which is reduced to half through dynamic steering as shown in Figure 7.19(b).

Figure 7.19(c) compares the data transfer overheads of the activity mi-
gration upon control and data flow optimisation with and without the
VSEE mechanism. One important aspect is that the data transfer over-
head upon migrating LAPW1 and LAPW2 activities is zero when using the
VSEE mechanism. The reason is that the sequential activities LAPW0 and
LAPW2 FERMI replicate all their output files to the sites where the following
LAPW1 and LAPW2 parallel loop activities are scheduled. Therefore, these
activities will find their inputs already prepared on the sites where they are
migrated which eliminates the data transfer overhead.

7.3.8 Steering Experiments

Our steering algorithm is based on the repeated invocation of the schedul-
ing heuristic engne at well-defined scheduling events in attempt to adjust the
optimised workflow schedule to the dynamically changing Grid resources. To
evaluate the algorithm, we generated three experimental WIEN2k workflow
instances (i.e. two DAG and one DG-based) that correspond to different ap-
plication input cases (i.e. the number of atoms and matrix sizes) with different
parallelization sizes (i.e. number of k-points). We use a static value of 50%
as the performance contract elapse factor of all workflow activities (see Sec-
tion 7.3.5).

Figure 7.20(a) traces the value of makespan objective function optimised
by the genetic algorithm at consecutive scheduling events during the execu-
tion of each experimental workflow. As the workflow activities are scheduled,
execute, and complete, the makespan of the remaining DAG1 and DAG2
sub-workflows obviously decreases with the number of scheduling events. The
abrupt decreases of the makespan happen after the submission of all the
LAPW1 k-points, which are the most time consuming workflow activities
that no longer need to be considered by the Scheduler. The abrupt increases
of the makespan are due the LAPW1 activities that violate their performance
contract which need to be reconsidered by the Scheduler for rescheduling, mi-
gration, and restart. In case of the DG-based workflow, the Scheduler always
receives the complete workflow as input but with different control precedence
relation between nodes, which explains why the makespan does not decrease
with the scheduling events.

254 7 Scientific Grid Workflows

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6
Number of Grid Sites

N
um

be
r o

f P
ar

tit
io

ns

(a) Number of partitions.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6

Number of Grid Sites

Ex
ec

ut
io

n
Ti

m
e

[s
ec

.]

No Optimisation Optimisation Optimisation and Steering VSEE

(b) Execution time.

0

1

2

3

4

5

6

1 2 3 4 5 6

Number of Grid Sites

Sp
ee

du
p

No Optimisation Optimisation and Steering Optimisation VSEE

(c) Speedup.

Fig. 7.17. The WIEN2k execution results (I).

7.3 Enactment Engine 255

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6

Number of Grid Sites

N
um

be
r o

f F
ile

s

No optimisation Optimisation Optimisation and Steering VSEE

(a) Number of file transfers.

0

100

200

300

400

500

600

1 2 3 4 5 6
Number of Grid Sites

N
um

be
r o

f J
ob

 S
ub

m
is

si
on

s

No Optimisation Optimisation

(b) Number of job submissions.

0

2

4

6

8

10

12

14

16

18

altix1.jku altix1 schafberg agrid1 arch_19 arch_21

Grid Site

La
te

nc
y

[s
ec

.]

GridFTP GRAM (Fork) GRAM (PBS)

(c) Latency of GridFTP and GRAM.

Fig. 7.18. The WIEN2k execution results (II).

256 7 Scientific Grid Workflows

0

20

40

60

80

100

120

140

1 2 3 4 5 6
Number of Grid Sites

D
at

a
Si

ze
 [

m
eg

ab
yt

es
]

No optimisation Optimisation and Steering VSEE

(a) Size of transferred files.

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6
Number of Grid Sites

Lo
ad

 Im
ba

la
nc

e
[s

ec
.]

No Optimisation Steering

(b) Overhead of load imbalance.

0

20

40

60

80

100

120

140

160

180

200

LAPW0 LAPW1 LAPW2_FERMI LAPW2

WIEN2k Activity Type

M
ig

ra
tio

n
Ti

m
e

[s
ec

.]

No VSEE VSEE

(c) Overhead of activity migration.

Fig. 7.19. The WIEN2k execution results (III).

7.3 Enactment Engine 257

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Scheduling Events

St
at

ic
 D

A
G

 M
ak

es
pa

n

DAG1 DAG2 DG

(a) Static DAG makespan.

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Scheduling Events

D
yn

am
ic

 W
or

kf
lo

w
 M

ak
es

pa
n

DAG1 DAG2 DG

(b) Dynamic workflow makespan.

0

50

100

150

200

250

DAG1 DAG2 DG

Workflow Case

M
ak

es
pa

n
[m

in
.]

Initial Prediction (Genetic Algorithm Scheduling)
Prediction with no Migration (Genetic Algorithm Scheduling)
Execution with Migration (Genetic Algorithm Scheduling)
Genetic Algorithm Overhead
Execution (Myopic Scheduling)

(c) Schedule comparison.

Fig. 7.20. The workflow steering executions traces.

258 7 Scientific Grid Workflows

Figure 7.20(b) traces the overall predicted workflow makespan (i.e. the
overall time the entire workflow is expected to execute) at consecutive schedul-
ing events during the workflow execution. There are several high peaks in the
histogram which are due to severe perturbations applied to the Grid sites
running the LAPW1 k-points. As a consequence of the performance contract
violation, the Enactment Engine rescheduled the critical activities to new ma-
chines at the next scheduling event which drops the next predicted makespan
close to the original predicted value. We achieve through rescheduling an
estimate of about two fold improvement in the overall makespan (see Fig-
ure 7.20(c)). Since the workflow referred as DAG2 represents a larger problem
size than DAG1, the benefit obtained through rescheduling and activity migra-
tion is higher. The final makespan of the DAG-based workflows is, however,
about twice as large as it was originally predicted by the Scheduler. While
most of the performance loss is the consequence of activity restarts (i.e. due
to duplicated file transfers and LAPW1 task computations), a fraction (i.e.
about 10%) is due to genetic algorithm execution overhead. For the DG-based
workflow, we could not estimate the makespan of the entire workflow (i.e. be-
yond the execution of one sequential loop iteration) since the number of loop
iterations is statically unknown. As a consequence, Figure 7.20 represents the
DG makespan of one workflow iteration only, which is successfully kept rela-
tively constant through activity migration in two critical occasions.

Figure 7.20(c) compares the use of the genetic algorithm for repeated
scheduling of the workflow against the myopic just-in-time approach. We per-
formed the experiments on the same workflow cases and under similar (logged)
Grid conditions as for the previous experiments. For the myopic algorithm, we
generate rescheduling events upon the completion of each workflow activity
and the successor activities are immediately scheduled on the resources that
produce the lowest execution times (with O(n) complexity). The overall work-
flow makespans obtained when using the myopic algorithm were in average
25% higher, because the genetic algorithm was able to find better workflow
mappings by looking ahead at the entire workflow.

7.4 Overhead Analysis

The ultimate goal of the Enactment Engine service is to support reliable
high performance execution of scientific applications on the Grid. While fault
tolerance techniques and distributed executions have important advantages
that ensure fast and proper completion of the application, they are also the
source of a broad set of additional overheads. In this section we try to classify
and understand the nature of these overheads and their contribution to the
overall workflow execution time [133].

Figure 7.21 presents a hierarchical classification of a set of overheads from
the Enactment Engine perspective that we classify in six main categories, as
follows:

7.4 Overhead Analysis 259

Middleware
Scheduling

Resource brokerage

Initial scheduling
Rescheduling

Execution control
Data flow

Queuing
Fault tolerance

Workflow preparation
Environment set-up

Checkpointing

Restore

Data transfer

Activity management

Retry

Migration
Data transfer
Checkpointing
Restore

Data repository

Enactment Engine overhead

Slave engine

Partitioning

User input

Scheduler imput

Third party transfer
Collection archiving

Data staging
Stage in

Stage out

Preparation

Submission
Polling
Queuing

Control flow level

Workflow level

Control flow level

Workflow level

Optimisation
Activity merge

Control flow

Data port archiving

Fig. 7.21. The execution overhead classification.

260 7 Scientific Grid Workflows

1. Middleware overhead is due communication with the middleware services,
which we further divide in:
a) Scheduling overhead represents the time spent by the Scheduler ser-

vice to appropriately map the workflow activities onto the Grid. The
rescheduling sub-overhead represents the time to needed to re-map
the remaining workflow activities onto other Grid resources upon
rescheduling events;

b) Resource brokerage overhead accounts for the time needed to query
and retrieve the available resources from the MDS information service;

c) Data repository overhead represents the time to access the remote
Experimental Data Repository to store, e.g. performance data and
checkpoint information;

d) Slave engine overhead represents the time needed by the master engine
to communicate with other remote slave engines;

2. Execution control overhead consists of the following sub-overheads re-
quired to control the execution of the workflow:
a) Data flow overhead represents the time required by the Enactment

Engine to dynamically analyse and optimise (i.e. archive, compress)
the data dependencies and decrease the number and size of file trans-
fers (see Section 7.3.3);

b) Control flow overhead represents the time needed to process the con-
trol flow dependencies, like fork a set of activities at the beginning of a
parallel loop, or join (synchronise) them at the end (see Section 7.3.2);

c) Queuing overhead represents the time to control the maximum num-
ber of parallel jobs submitted to one Grid site, which avoids overload-
ing the GRAM gatekeepers on slower front-end computers;

3. Fault tolerance overhead comprises:
a) Checkpointing overhead represents the time required to stop the exe-

cution of the workflow and store the state into the Experiment Data
Repository;

b) Restore overhead represents the time taken to restore and resume a
workflow execution from the last checkpoint;

c) Retry overhead represents the time required to re-execute a failed
activity on the same or on a different Grid site;

d) Migration overhead represents the time needed to checkpoint, resched-
ule, and resume an activity;

4. Workflow preparation comprises:
a) Environment setup overhead is the time needed to prepare the execu-

tion environment of a workflow, for example to create the necessary
directory structure required by legacy applications;

b) Partitioning overhead is the time required to partition the work-
flow into smaller parts to be executed by the slave engines (see Sec-
tion 7.3.1);

7.4 Overhead Analysis 261

c) Optimisation overhead represents the time required to optimise the
workflow before the execution using the control flow and data flow
optimisation techniques presented in Sections 7.3.2 and 7.3.3;

5. Data transfer overhead is due to any kind of data transfer that implements
the workflow data dependencies, including:
a) User input overhead (interactive);
b) Input from scheduler overhead for runtime location of data dependen-

cies (see Section 7.3.3);
c) Third party transfer overhead between two remote Grid sites;
d) Collection archiving for archiving and compressing a data collection

before initiating a third party data transfer;
e) Data staging overhead including stage in from the local user machine

to the remote Grid site where the workflow input is needed by the
first activities, and stage out of the workflow output from the remote
site to the local machine;

6. Activity management overhead comprises the following sub-overheads:
a) Preparation overhead corresponds, for example, to the time required

to uncompress data archives or create remote directory structures;
b) Submission overhead represents the time needed to submit a compu-

tational activity on a Grid site;
c) Polling overhead is the time required to poll for job termination to

the GRAM gatekeeper;
d) Queuing overhead is related to jobs waiting in the local queuing system

of the parallel machines available as Grid sites.

7.4.1 Experiments

For validating our overhead analysis approach, we use again the WIEN2k
material science workflow (presented first in Section 6.3.1) which we executed
in the Austrian Grid testbed depicted in Table 7.6. Our experiments try to
answer multiple questions, such as:

• what speedups can we obtain by running the application on several dis-
tributed Grid sites compared to the fastest parallel computer available?

Rank Site Architecture Size CPU GHz Job Location
Mgr.

1 altix1.jku ccNUMA, SGI Altix 3000 10 Itanium 2 1.6 Fork Linz
2 gescher COW, Gigabit Ethernet 10 Pentium 4 3 PBS Vienna
3 altix1.uibk ccNUMA, SGI Altix 350 10 Itanium 2 1.6 Fork Innsbruck
4 schafberg ccNUMA, SGI Altix 350 10 Itanium 2 1.6 Fork Salzburg
5 agrid1 NOW, Fast Ethernet 10 Pentium 4 1.8 PBS Innsbruck
6 arch19 NOW, Fast Ethernet 10 Pentium 4 1.8 PBS Innsbruck

Table 7.6. The Austrian Grid testbed for overhead analysis experiments.

262 7 Scientific Grid Workflows

• what are the most important sources of overheads that slow down the
execution of the Grid application?

• how does the distributed Enactment Engine architecture improve the
workflow execution time?

• what are the overheads of the two workflow level checkpointing approaches
proposed?

We used an average WIEN2k problem size of 100 parallel k-points that
generates a total of over 200 workflow activities. We first ranked the Grid sites
according to their individual speed in executing the WIEN2k application, as
presented in Table 7.6. Thereafter, we executed the workflow on the fastest
Grid site available (in Linz) and then we incrementally added new sites to
the execution environment. Figure 7.22(a) shows that this modest WIEN2k
problem case considerably benefits from a distributed Grid execution until
three sites. The improvement comes from the parallel execution of WIEN2k
on multiple Grid sites that significantly decreases the computation of the
LAPW1 and LAPW2 parallel loop activities. Beyond four Grid sites we did
not obtain further improvements due to a slow interconnection network of one
megabit per second to the Grid site in Salzburg. As expected, the overheads
increase with the number of aggregated Grid sites, as shown in Figures 7.22(c)
(5.669%) and 7.23(a) (25.933%).

We can rank the importance of the measured overheads as follows:

1. Data transfer overhead increases with the number of Grid sites due to a
high number of GridFTP third party file transfers;

2. Load imbalance overhead increases with the number of Grid sites, mainly
because of heterogeneity. We define the load imbalance as the difference
between the maximum and the average termination time of the activities
in a workflow parallel loop (e.g. LAPW1 and LAPW2). Figure 7.22(b)
displays the distribution of activities to the Grid sites in each Grid con-
figuration, as computed by the HEFT algorithm used to schedule the
workflow;

3. Workflow preparation overhead increases since more preparatory tasks are
required when multiple sites are used;

4. Checkpointing overhead increases with the number of checkpoints per-
formed;

5. Middleware overhead , including scheduling and resource brokerage over-
heads, remains relatively constant since is done once for every single exe-
cution using the same algorithms;

6. Activity management overhead , in contrast, decreases with the number of
Grid sites since the more activities are executed in parallel, the more job
preparations overheads will overlap.

The most important overhead for this application is, therefore, the data trans-
fer. Figures 7.23(b), 7.23(c), 7.24(a), and 7.24(b) display the breakdown of the
data transfer overhead from one to four Grid site configurations. The percent-
ages of the input data staging, output data staging, and input from Scheduler

7.4 Overhead Analysis 263

0
500

1000
1500
2000
2500
3000
3500
4000

1 2 3 4 5 6
Number of Grid Sites

Ex
ec

ut
io

n
Ti

m
e

[s
ec

.]

Computation time Control flow-level checkpointing
Restore Scheduler
Resource manager Data transfer
Load imbalance Activity management
Data repository Workflow preparation

(a) Scalability.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Number of Grid Sites

A
ct

iv
iti

es
 p

er
 S

ite

altix1.jku gesher altix1.uibk schafberg agrid1 arch_19

(b) Distribution of parallel activities.

Job
preparation

4,327%

Resource
manager
0,349%

Load
imbalance

0,000%

Control flow-
level

checkpointing
0,206%

Restore
0,047%

Data transfer
0,293%

Scheduler
0,447%

Execution time
94,331%

(c) All overheads on one Grid site (altix1.jku).

Fig. 7.22. The WIEN2k overhead analysis (I).

264 7 Scientific Grid Workflows

Makespan
74,067%

Resource
manager
0,588%

Scheduler
0,719%Restore

0,137%

Control flow-
level

checkpointing
0,306% Data transfer

2,132%

Load
imbalance
18,060%

Job
preparation

3,991%

(a) All overheads on two Grid sites (altix1.jku,
gescher).

Stage out
34%

Third party
data transfer

0%

Input from
Scheduler

0%
Stage in

66%

(b) Data transfer overheads on one Grid site (al-
tix1.jku).

Stage in
17,788%

Input from
Scheduler

0,024%
Third party

data transfer
75,149%

Stage out
7,039%

(c) Data transfer overheads on two Grid sites (al-
tix1.jku, gescher).

Fig. 7.23. The WIEN2k overhead analysis (II).

7.4 Overhead Analysis 265

Stage in
12,474%

Input from
Scheduler

0,018%

Third party
data

transfer
82,414%

Stage out
5,095%

(a) Data transfer overheads on three Grid sites (al-
tix1.jku, gescher, altix1.uibk).

Input from
Scheduler
0,005%

Stage out
1,414%

Stage in
3,640%

Third party
data transfer

94,942%

(b) Data transfer overheads on four Grid sites (al-
tix1.jku, gescher, altix1.uibk, schafberg).

Fig. 7.24. The WIEN2k overhead analysis (III).

overheads decrease significantly since they are relatively constant in each ex-
ecution. The third party GridFTP-based file transfer is the main source of
overhead, which increases from 0% for one site to 94.942% on four sites.

We configured Enactment Engine to perform a checkpoint after each main
phase of the WIEN2k execution, i.e. LAPW0, LAPW1, and LAPW2. In ad-
dition, we configured the master engine to perform input data checkpointing
and the slave engines to do output data checkpointing. Figure 7.25(a) com-
pares the overheads of the control flow level checkpointing and the workflow
level checkpointing for a centralised and a distributed Enactment Engine.
The overhead of the control flow level checkpointing is, as expected, very low
and relatively constant since it only stores the workflow state and URLs to

266 7 Scientific Grid Workflows

0
50

100
150
200
250
300
350
400
450
500

1 2 3 4 5 6

Number of Grid Sites

Ti
m

e
[s

ec
.]

Control flow level Checkpointing
Workflow level Checkpointing
Distributed Workflow level Checkpointing

(a) Checkpointing overhead comparison.

0

500

1000

1500

2000

2500

3000

3500

4000

Mak
es

pa
n

LA
PW

0

LA
PW

1

LA
PW

2_
FERMI

LA
PW

2

Activity Type

G
ai

n
[s

ec
.]

Control flow level Checkpointing Workflow level Checkpointing

(b) Checkpoint gains.

Fig. 7.25. The WIEN2k checkpointing results (I).

data dependencies. The overhead of the workflow level checkpointing for a
centralised Enactment Engine increases with the number of Grid sites be-
cause more checkpointing data needs to be transferred to the Experiment
Data Repository. For a distributed Enactment Engine, the workflow level
checkpointing overhead is much lower since every slave engine uses a local
repository to store the checkpointed data files, which eliminates the wide area
network file transfers.

Figure 7.25(b) presents the gains we obtained in the single site workflow
execution because of checkpointing. We define the gain as the difference be-
tween the timestamp when the last checkpoint is performed tCKPT minus the
timestamp of the previous checkpoint t′CKPT:

Gain = tCKPT − t′CKPT.

7.4 Overhead Analysis 267

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

Number of Grid Sites

D
at

a
Si

ze
 [m

eg
ab

yt
es

]

Entire Workflow Control flow-level Checkpointing
Workflow level Checkpointing

(a) Size of data transferred.

0

5

10

15

20

25

30

1 2 3 4 5 6

Number of Grid Sites

N
um

be
r o

f F
ile

s

Entire Workflow Workflow level Checkpointing
Control flow level Checkpointing

(b) Number of files transferred.

Fig. 7.26. The WIEN2k checkpointing results (II).

The largest gains are obtained after checkpointing the parallel loops LAPW1
and LAPW2. The gain for workflow level checkpointing is lower since it sub-
tracts the time required to copy the data to the Experiment Data Repository.

Figure 7.26(a) shows that the size of the data checkpointed at the work-
flow level is bigger than the overall size of data needed to be transferred for a
small number of Grid sites (up to three, when scalability is achieved). Beyond
four sites, the size of the data dependencies exceeds the workflow level check-
pointing data size. The data size of the control flow level checkpointing is, of
course, negligible. The number of files transferred preserves, more or less, this
behaviour (see Figure 7.26(b)).

268 7 Scientific Grid Workflows

7.5 Summary

In this section we introduced an abstract hierarchical model for representing
large and complex scientific workflows supported by a comprehensive Grid
computing runtime environment. A Scheduler service enhances the optimisa-
tion framework presented in Chapter 6 with new techniques for converting
dynamic workflows into flat static DAGs that can be effectively scheduled us-
ing graph-based heuristic algorithms. An Enactment Engine distributed across
several Grid sites ensures scalable and fault tolerant execution of large scien-
tific workflows through techniques such as partitioning, control and data flow
optimisation, runtime steering adaptation, and various levels of checkpoint-
ing. We validated our approach by modeling, scheduling, and executing two
real-world applications from the material science and meteorological fields in
a real Grid environment (i.e. Austrian Grid). Finally, we classified the major
sources of overheads that occur when executing workflows in distributed Grid
environments and presented a large number of experiments and scenarios that
illustrate how to gain performance in a real, heterogeneous, and dynamic Grid
environment.

