LQCD Workflow Management Proposal

LQCD Workflow Management Proposal
Jim Kowalkowski, Luciano Piccoli
1 Introduction
Data processing within the LQCD project is carried out as analysis campaigns. Any analysis campaign consists of an input dataset and a set of interdependent processing steps that can be expressed as a directed acyclic graph (DAG). This DAG can be considered to be the workflow specification for an analysis campaign. Given the size and complexity of the LQCD compute cluster, it is now necessary to more closely manage these workflow specifications, and use them to automate many aspects of executing an analysis campaign.
The purpose of this paper is to define a subsystem that allows workflow to be specified in domain-specific way and later be turned into a set of instructions that can be carried out or executed on a compute cluster. Execution includes configuration, submission, progress tracking, and accounting of an analysis campaign. It also includes input staging and storage of results. This paper contains a description of the problem and a working set of requirements for this subsystem. It also includes a description of how the problem is currently being addressed and suggestions on how it might be solved within this new subsystem.
1.1 Scope

We are currently assuming that the underlying computing infrastructure has a batch job submission system with a scheduler and that we are able to communicate with these systems. We are also assuming that a software system will exist for monitoring all interesting aspects of a job and that that system will provide a framework for reacting to recognized important conditions.
1.2 Rationale

The task of monitoring an ongoing campaign becomes too large for a person to do once a compute cluster becomes very large. As the number of concurrently executing tasks becomes very large, the person monitoring the jobs becomes the bottleneck in the system.

Diagnosing job problems and failures, and taking corrective actions is a highly repetitive and algorithmic task. Much of this work is better suited for a computer than for a person.

For large installations, tracking progress and knowing what has been done and what needs to be done is necessary to optimize resource utilization, to meet deadlines, and to do planning for the future.
1.3 Terminology

Configuration: A four dimensional wave function. It represents a snapshot of space-time. It lives in a file that is about 2GB (probably will grow to about 8GB). Each file can be thought of as a single event in a large ensemble.
Dataset: A collection of configuration files (the ensemble) that meet some criteria.
U-file: A number identifying a configuration file.
Propagator: A function that evolves a configuration from some initial state to a final state
Workflow specification: A formal description of dependencies and parameters amongst processing steps in an analysis campaign.
Configuration generation: The process of creating configurations.
Analysis Campaign: Applying everything described in a workflow to all configurations in a dataset.
1.4 Basic feature overview
Some basic features of this subsystem include:

· Definition of a workflow language that it useful for describing an analysis campaign.

· A set of tools that aid in the writing and validation of documents that conform to the language.

· Management (e.g. storage and retrieval) of workflow specifications.

· A set of tools that transform the workflow specifications into instruction that can be scheduled (e.g. Maui) and executed (e.g. PBS, Condor) within the various computing environments.

· Monitoring the progress of the activities and progress of work being carried out within a workflow and store metrics related to jobs.

· A set of components that are capable of reacting (taking action in response) to progress reports and measurement data from the monitoring system.

· Lifetime management of temporary or intermediate results in order to maximize resource utilization (e.g. disk space, network bandwidth, memory, CPU).

· A set of planning tools to help with the scheduling of analysis campaigns.
2 An Example Campaign
2.1 What needs to be done
An example analysis campaign description will be used to demonstrate the type of processing that occurs on the LQCD cluster. Below is the definition of 2-pt analysis for processing one configuration file. The ovals represent work being done in the form of jobs run on demand or under a batch system. The horizontal bars represent fork (parallel execution starting) or join (completion synchronization) conditions. The rectangles represent products (files in this case).
There are approximately 600 configuration files that live on RAID disk, on tape, or somewhere within dCache. For many analysis campaigns, the processing of one configuration file is independent of any other configuration file, so many can be processed at the same time.
The first step in processing one configuration file is to make the file available to all the jobs that must access it directly. This step is likely to be done outside the domain of the job scheduler/batch queuing system. The amount of work done here depends on how much of the data is already cached in acceptable places and how much must be transferred from long-term storage or from remote locations. It may also depend on the architecture of the cluster.
Step two is to run the all the propagators. The input of these jobs is a configuration file and a file of job parameters. The output of this stage is large intermediate result files that currently live in a large LRU-base disk buffer. Gathering of these intermediate results can use significant disk and network bandwidth.
The last step uses the intermediate results to form summaries useful in a final analysis.
Executing the workflow in the diagram for a given configuration file generates one row in the above results table (example). Each cell holds the results from the HL/HH jobs in the workflow. The goal is to fill out the entire table by running the workflow on each configuration file. Later analysis is typically carried out using columns of this table i.e. the same thing being calculated using each configuration and averaged across all the configurations for a final measurement.
Currently the programs that run in the various stages three different software environments or software frameworks: MILC (LQ jobs), FermiQCD (HQ jobs), and Canapy (HH/HL jobs).

Error! Not a valid link.
2.2 Some interesting aspects

The LQCD execution environment can greatly benefit from workflow automation. Furthermore, the environment can focus on improving the usage of the resources by closely managing campaigns and its dependencies. The following are some aspects of interests for workflow management.
Overlap of computation and communication: given the amount and size of input and intermediate data the workflow management may exploit the overlapping of data transfer and processing.

Multiple campaign instances: as in the example described above, a campaign sequence may be applied to several input configurations, which may require distinct input parameters. The instances are completely independent of each other and can potentially be executed in parallel.

Multiple campaign types: many users submit distinct campaign to be executed in the system. The workflow manager has to allocate and distribute the resources to the campaign according to predefined policies, such as user based priority.
Fault tolerance: as the campaign progresses the workflow management is kept informed of the execution status of each step in the workflow. On the detection of faults (e.g. job crashes) the system should minimize the impact on the overall workflow execution (e.g. restart only the failed job instead of restarting the whole workflow).
Job parameters: campaigns may share the same description, however each one has its own parameters, such as the names of input configuration files.
Execution time: each job in a campaign may have a maximum expected execution time. The scheduler can use that information and match with available resources to provide the required processing power. The execution time may also be defined within the campaign scope, which can again be used by the scheduler to handle the execution of concurrent workflows with the constraint of meeting the expected times. This is one of the potential QoS parameters in the system (the number of required nodes may be an additional QoS parameter).
Scheduling: the workflow manager should provide a schedule for concurrent campaigns, which may started by different users at distinct priorities. Each campaign has its own QoS parameters and the scheduler must balance these requirements against available resources. Jobs of lower priority campaigns may be preempted by higher priority jobs.
Rescheduling: based on job and machine status information a workflow schedule may be reconsidered by the workflow manager and a new mapping can be produced in order to recover from a fault or to avoid a future fault (e.g. temperature sensors reporting above average measurements).
Temporary data management: intermediate generated data should be kept available while the campaign is active and possibly beyond its execution in order to speed up campaign re-runs.
2.3 How the process is currently managed
A campaign is currently described in a perl based makefile-like file divided into three sectionts: perl commands, script and makefile. The first section contains the campaign parameters and initializations (e.g. creation of directories). It is executed before any job is launched.
The following script section is a sequential list of jobs to be executed in the correct order. The final makefile section defines the jobs from the previous section as sequences of commands, including parameters passed to PBS (batch system). It also defines the dependencies between jobs in the same syntax used by regular makefiles.
The execution of jobs is monitored through the file system. At every step in the execution (starting or stopping a job or a campaign) a file is created under a directory tree containing each campaign run. The correct termination or failure of a job is indicated by the presence of a file.
3 Requirements
3.1 Workflow specification and manipulation tools

Specification language: language that can describe a LQCD campaign by defining what are the tasks, the parameters, control and data dependencies between them. The specification language should not allow users to describe jobs at a low level (e.g. call shell scripts or manipulate files). Several workflow specification languages are available and specifications can usually be converted between standards. The migration from the perl based makefile to a specification language requires the initialization and makefile sections to be converted into stand alone jobs.
Manipulation tools: workflow specifications are represented in text format (may be encoded in XML or other notation standard) and can be saved in a repository (e.g. CVS) as templates. The text format allows user to modify the specification using regular text file editors. Modification should also be possible through a graphical interface (e.g. Triana), where it is possible to easily verify the connections between jobs. Validation tools should be available to make sure the specifications comply with the standards.
3.2 Execution

Each job in a workflow specification contains information of an executable file or script that should run when all the input and control conditions are ready.
Before the job can be executed, the job has to be assigned to a node or set of nodes. This stage is performed by the scheduler, who converts an abstract workflow into a concrete workflow, i.e. jobs are assigned to machines for execution.
Once the job/node mapping is defined the system must make sure the supporting environment and software is available on the node. The script or binary is invoked and its execution is monitored by the system.
3.3 History
All campaigns submitted for execution have statistics and states recorded (possibly through a database). The campaign monitor collects run time information from the executing nodes and updates the overall campaign status. The system must make available all the information about submitted, executing and completed campaigns.

3.4 Performance, status, and recovery
Workflow jobs are closely monitored by the system, keeping track of execution time, resource usage and status. As work progresses these parameters are logged and should be available for users.
The system should detect failures from the monitoring data and trigger actions to recover from the failure. Individual jobs may be recovered from checkpoints periodically taken while the workflow may need rescheduling. It is important to keep outputs generated before the failure, such that previous workflow steps do not have to be recomputed.
3.5 Resource Utilization

The workflow management system is responsible for managing several campaigns in parallel. The scheduler must find the best match between the campaigns and the available resources.
Besides the number of machines required for a campaign, the scheduler must take in consideration the input, output and intermediate file sizes and locations.

3.6 Planning

The workflow system has knowledge and control over the whole computing cluster and therefore can perform a mapping from an abstract to a concrete workflow.
Based from monitoring information the system may restructure the workflow mapping, for example if a rack of computers loses power the system must change the node/job assignment.

3.7 Unclassified at this time
Enable users to describe the dependency relations among the steps of an analysis campaign.

The framework should make “runnable” job steps as soon as their dependencies are successfully completed. Users should be able to control the maximum number of running job steps.

The framework should pre-stage input data files and store output data files.

The framework should be able to plan the execution order in an analysis campaign so that delays due to data access latencies are minimized.

Maintain a persistent history for the state of an analysis campaign. Use the saved state to resume from the last successful step in case of an error or when restarting a campaign at a later date.

Provide a framework to monitor the performance, error rates and resource requirements for a campaign.

Provide a uniform framework for interacting with batch systems, grid portals and UNIX system processes.
Describe how this subsystem will be used by outside actors. Include constraints imposed by outside systems and any other important factors governing its design and implementation.
3.8 Actors

List of actors external to the workflow system.
User: person that creates a workflow specification and submits campaigns to the system.
System Monitor: detects failures in the system and keeps the workflow system updated.
Computing Node: machine available for executing workflow jobs.
3.9 The Major Inputs and Output

Each campaign has at least one input file and generates one output file. The source and destination is generally the dCache system. Each workflow stage may generate intermediate files that need to be closely managed.
3.10 Behavioral requirements (use cases)

List the steps necessary to perform each important task associated with this system. Do not include any implementation details here, only brief statements of actions and responses for each one. Each use case should only cover one specific task. Below is a template for use cases.
Use cases:

User creates campaign template
User tailors a campaign template
User submits a campaign execution
User monitors a campaign execution
System Monitor reports failure
Computing Node crashes
Workflow Management reschedules campaign

3.10.1 User creates campaign template
	Task
	User creates campaign template

	Level
	Summary/user goal/sub-function

	Goal
	Create a campaign template that can be reused by changing a few parameters

	Actor
	User

	Trigger
	There are several similar campaigns that can be derived by a single specification

	Preconditions
	There are similar campaigns

	Post-conditions
	Template can be used to create new specifications

	Description
	1. User identifies steps to perform campaign
2. User specifies steps using the workflow language
3. User checks if specification is valid

4. User saves template

	Nonstandard Flow
	3. Specification fails validation
3.1. System points out the problem

3.2. User fixes specification

	Comments
	-

3.10.2 User tailors a campaign template

	Task
	User tailors a campaign template

	Level
	Summary/user goal/sub-function

	Goal
	Define parameters of a campaign template to create a concrete specification

	Actor
	User

	Trigger
	Creation of a workflow based on existing template

	Preconditions
	Campaign template and deined input parameters

	Post-conditions
	Workflow specification that can be submitted for execution

	Description
	1. User selects campaign template
2. User defines the input parameters
3. User checks if specification is valid

4. User saves the campaign

	Nonstandard Flow
	3. Specification fails validation

3.1. System points out the problem

3.2. User fixes specification

	Comments
	-

3.10.3 User submits a campaign execution

	Task
	User submits a campaign execution

	Level
	Summary/user goal/sub-function

	Goal
	Start a campaign computation

	Actor
	User

	Trigger
	Campaign is ready to be started

	Preconditions
	Campaign specification has been checked

	Post-conditions
	Campaign is being executed by the workflow system

	Description
	1. User submits a valid campaign specification for execution
2. Workflow System acknowledges the request
3. Workflow System schedules execution
4. Workflow System informs User about expected execution time

	Nonstandard Flow
	2. Workflow System refuses campaign submission

2.1. User does not have permission to submit campaigns

3. Workflow System fails to schedule campaign
3.1. There are no resources available to meet campaign requirements

3.2. User relaxes requirements and resubmits campaign

	Comments
	-

3.10.4 User monitors a campaign execution
	Task
	User monitors a campaign execution

	Level
	Summary/user goal/sub-function

	Goal
	Verify the campaign progress

	Actor
	User

	Trigger
	-

	Preconditions
	Campaign is running

	Post-conditions
	User receives updated information about the campaign progress

	Description
	1. User requests progress information about a campaign
2. Workflow System gathers information and sends back to user

	Nonstandard Flow
	2. Requested campaign is not valid (e.g. unknown campaign ID)

	Comments
	-

3.10.5 System Monitor reports failure

	Task
	System Monitor reports failure

	Level
	Summary/user goal/sub-function

	Goal
	Inform Workflow System that there is a failure that may impact on execution of campaigns

	Actor
	System Monitor

	Trigger
	A fault is detected

	Preconditions
	System Monitor and Workflow System are running

	Post-conditions
	Workflow System is informed that there is a failure in the system

	Description
	1. System Monitor detects a failure in the system (node crashes, high CPU temperature, etc)
2. System Monitor sends information about the failure and passes to the Workflow System

	Nonstandard Flow
	-

	Comments
	-

3.10.6 Computing Node crashes

	Task
	Computing Node crashes

	Level
	Summary/user goal/sub-function

	Goal
	Detect a machine crash and inform Workflow System

	Actor
	System Monitor

	Trigger
	A computing node crashes

	Preconditions
	System Monitor, Workflow System and computing node are running

	Post-conditions
	Workflow System is informed that there is a machine crash in the system

	Description
	1. System Monitor detects that a node is not running anymore
2. System Monitor sends information about the machine not running to the Workflow System

3. Workflow System finds which campaign executions were using the failed node

4. Workflow System reschedules affected workflows

	Nonstandard Flow
	-

	Comments
	This is a particular case of the use case 3.10.5

3.10.7 Workflow Management reschedules campaign

	Task
	Workflow Management reschedules campaign

	Level
	Summary/user goal/sub-function

	Goal
	Reschedule a campaign

	Actor
	Workflow System

	Trigger
	A failure in computing nodes

	Preconditions
	A campaign is running

	Post-conditions
	Campaign has been rescheduled, jobs are assigned to other nodes, jobs that were running on any crashed node are restarted on other nodes (possibly from a checkpoint)

	Description
	1. Workflow System is informed by an event that requires campaign rescheduling
2. Workflow System finds which campaign are affected by the event

3. Workflow System restart crashed jobs from checkpointed states

4. Remaining parts of the campaign are rescheduled (if needed)

	Nonstandard Flow
	-

	Comments
	This use case is the continuation of 3.10.5

3.11 Constraints

List any additional non-functional requirements here or reference them here. Examples include known external interfaces or protocols or performance constraints.

3.12 Failure modes

List problems that this system may encounter.
4 Architectural Overview
This section can contain a series of diagram illustrating parts of the subsystem and their relationship with other parts.

Do all the following subsections make sense? Does it make sense to distinguish between a function or role and components?

4.1 Roles
The roles or functional units are defined and described in this section.

4.2 Functional unit or Component block diagram
Include here a picture of functional units within the system and their relationship to one another.
4.3 Physical unit block diagram

Show here the known hardware configuration that is to be built or is available for use.
4.4 Deployment scenario

How do functional units and components map to physical devices?
5 Component Interfaces

Expand the interfaces of the components shown in the previous section. Include relationships to other components here.
6 Protocols

Describe known elements of any protocol involved in data exchanges, external or internal to this subsystem, and the types of messages or data that may be exchanged. This is distinguished from component interfaces right now – should it be?
Show important invocation or message exchange timing sequences here. Show what parts of the interfaces are used by other components.
7 Discussion

This section captures discussions and information that lead to the current architecture view and component organization.
7.1 Decisions and Choices

Other solutions that were considered and rejected should be briefly summarized here along with arguments for and against them. The purpose of doing this is so old arguments do not continually resurface.
7.2 Rationale

Why the current architecture and component interfaces are appropriate for the problem.
7.3 Implications resulting from Choices

Additional constraints that are imposed on the whole system or this system as a result of choices made here.
7.4 Resulting rules

Include all things that must be true in the system and rules that must be followed while the system is in operation. An example is that one worker node will only be assigned to one partition.
7.5 Constraints imposed on other systems

List what constraints this system imposed on other systems.
8 Testing considerations

Explain any load testing that must be performed to evaluate the performance of this system as a whole or parts within it. Suggestions for how to test (verification and validation) this system should be included. Ways of evaluating the performance of this system should be included here.

- 12 -

- 11 -

