1 Functional Requirements

1.1 Execute campaigns

The workflow system should manage the execution of campaigns. A typical campaign consist of taking an ensemble of vacuum gauge configurations and using them to create intermediate data products (propagators) and output meson n-point functions for every configuration in the ensemble. The input ensemble, associated physics parameters and data outputs define the data processing dependence of a campaign.
Many workflow instances may use the same workflow template over different input files, using fixed parameters (e.g. particle mass, lattice dimensions). Very large intermediate files may be generated during the execution of a campaign.

A user has to define the workflow instance and the system executes it
.
A campaign must be suspendable and resumable – persistent state. Can be resumed later at the same point it has stopped.
Participant is an atomic operation with respect to execution. Participant is not required to be fault tolerant (stateless entity, checkpointing is not required for participants). 
Restart means start from zero, no checkpoints.

Resume means start from the last completed intermediate result.

A user can query the status of a campaign execution, e.g. at what stage it is, how long it may last.

Ideal vs practical executions

Ideal – infinite resources

Practical – depends on resource availability (computing and storage) – merging the ideal workflow instance with the cluster constraints and policies
Long term: specify the output and system figures out the workflow and execution strategy
A campaign could consist of a single workflow, where the intermediate products are used immediately, or it could be broken up into multiple workflows, with the intermediate products stored for later use. 
1.2 Workflow specification
A LQCD workflow management system should be developed to conduct workflow specification automatically, and manages and executes workflows on computing resources. 

The system should provide means for specifying workflows (generate workflow instances) in graphic (e.g. Triana or Kepler interface) or text mode (e.g. through editing a workflow via workflow languages, such as the AGWL supported by Askalon, or a XML file).
1.3 Scheduling

Scheduling has three levels, pick the actual participants, control the readiness of a task, and schedule the task execution. The former two should be supported by workflow. The latter one can be considered as local scheduling and supported by each participant. Workflow specification defines the participants in terms of functionality, for instance the access of input file A. But, input file A may have multiple identical copies located at different physical locations. Workflow scheduling determines which copy of input file A should be used. The file server B contains this chosen copy (the chosen participant) may schedule request C of access input file A accordingly. Before assign the request C to server B, however, the workflow system may need to make sure task D has updated input file A already.
Workflow scheduling system should control the data and task dependencies of a campaign, i.e. a task only can be executed when its input data become available. In the LQCD system the workflow management must closely work with the local system scheduler (currently PBS/MAUI). PBS/MAUI may not be aware of the dependencies between jobs, therefore the workflow has to direct which tasks are available to run. 
1.4 Dispatch campaigns

The user submits a campaign, in terms of workflow instance(s), to the system, which takes care of the execution.

The system should conduct workflow scheduling and the participants could be remote.

1.5 Monitor progress
A monitor system should be available to keep track of workflow execution, maintaining status information about all intermediate steps and generated files. Information is accessible to users for checking at what stage the workflow execution is.
1.6 Access execution history

The monitor system should make historical execution information available to users and for the workflow system. Information can be used for predicting future executions and help to improve performance.
1.7 Handle multiple campaigns
Multiple campaigns, submitted by multiple users or a single user, can be conducted concurrently. The execution of these campaigns needs to be coordinated (scheduled) to utilize the resources and improve the performance. The coordination can be carried via scheduling and rescheduling.
1.8 Quality of Service
Different campaigns may be scheduled accordingly to their priorities for the purpose of quality of service. The system may provide assurance that a campaign can be executed within a time period, and report if conditions cannot be met. 
1.9 Stage in configuration files 

Campaigns may have large input files. These files may reside outside the cluster that carries the execution of the campaign. The workflow system is responsible for fetching these files (through dCache or Grid) and may cache these files for later processing. We assume these input files are not modified by others or by the execution during the execution.
1.10 Fault tolerance

The workflow system should interact with the monitoring system to identify hardware and software failures. Fault tolerance measure should be taken to avoid or mitigate the fault penalty.
Level 0 FT: restart/resume a failed campaign.
1.11 Manage intermediate files

Intermediate data files should be cached in such a way that they will improve the performance, such as used under a fault recovery or by another campaign, but not degrade the performance due to data store overhead.

1.12 Data provenance
Information about the configuration that generated the intermediate files must be saved, such that later campaign with the same configurations can reuse the data.
�?





