
Runfile users’ guide

Chapter 1: Introduction 1

1 Introduction

Run is a general-purpose utility for controlling Unix jobs. It tries to look like Make but combines

elements of shell scripts, Make and perl into a single ‘Runfile’.

A job can be described in terms of its dependencies on other jobs, as in Make. The order in which

jobs are executed can be predetermined, as in a shell script. Since run knows the dependencies of

the jobs, it is able to make reasonably intelligent guesses at how to restart a crashed job. Run keeps

logs of all the jobs it starts and their output in a ‘history’ directory.

In addition to controlling jobs, run records timing and progress information. This can be used

for profiling jobs and estimating time-to-completion.

Run itself is written in perl. You do not need to be proficient in perl to start using run, but there

are many hooks which allow the advanced user to extend the functionality of run with additional

perl code. These hooks are accessed from the user’s ‘Runfile’, not by modifying the run source

code.

Since the purpose of run is to control jobs on acpmaps, there are a number of additional utilities

provided for handling tapes and field files. These are not part of run, which deals only with Unix

processes.

2 Run

Chapter 2: A simple Runfile 3

2 A simple Runfile

In this chapter we’ll look at a very simple example of a ‘Runfile’. Its task will be to create

three text files and count the words in them.

2.1 The simple Runfile

Here is the ‘Runfile’ in full. You can copy this example into a source file to try it.

::perl
@runs = (’001’, ’002’, ’003’) ; # this is required

print "hello from the perl section\n" ;

::script

%create_text_file
%count_words

::makefile

create_text_file:
echo "hello world" > $run.txt

count_words: create_text_file
wc -w $run.txt

2.2 Invoking run

Assuming we have named our file ‘Runfile’ we can start things running with the command,

bjg|fncrd6> run

This is the output,

bjg|fncrd6> run
run 0.5 (Exp) (bjg) [26656]
hello from the perl section

4 Run

#
001 starting... Sat Sep 2 23:19:01 CDT 1995
001 submitting create_text_file
001 running create_text_file [26665]
001 create_text_file completed successfully [26665] 0 s
001 submitting count_words
001 running count_words [26675]
001 count_words completed successfully [26675] 0 s
001 completed successfully 3 s
...

2.3 The simple runfile in detail

Let’s take a look at the three sections of the ‘Runfile’, which are denoted by ::perl, ::script

and ::makefile. First there is a perl section, ::perl,

::perl
@runs = (’001’, ’002’, ’003’) ; # this is required

print "hello from the perl section\n" ;

which can contain arbitrary perl code. It is executed before the script starts launching jobs. The

only required part of the perl section is the definition of the list @runs. This gives the numbers or

names of the runs to be executed. In perl @ denotes a variable which is a list or array. In this case

we will have three runs called 001, 002 and 003.

Next, in the script section of the ‘Runfile’ we can include shell commands to generate a list of

the jobs to be executed, and the order they should be executed in,

::script

%create_text_file
%count_words

In this case we simply list the jobs that we want to execute. Typically this is all that is needed and

the script section is very straightforward.

Note that the names of the jobs should be prefixed with a % sign, meaning that they refer to

the Makefile section which follows.

Chapter 2: A simple Runfile 5

In the makefile section of the script we give the definitions of the jobs, in terms of the commands

needed to run them and their dependencies. This works in exactly the same way as a Makefile.

Note in particular that the commands should be indented using tabs as they are in a Makefile.

::makefile

create_text_file:
echo "hello world" > $run.txt

count_words: create_text_file
wc -w $run.txt

In this case the job create_text_file writes hello world into the file ‘$run.txt’, where $run is

a reserved variable which gives the current run number (001, 002 or 003). In perl $ denotes an

ordinary variable, just as in the shell.

The job count_words depends on create_text_file and must wait for it to complete suc-

cessfully before starting. It counts the words in the file created by create_text_file using wc

-w.

2.4 Output from run

Now let’s look at the output from run itself and what it does. We start everything with the

command run, which searches for a file called ‘Runfile’ by default (just as make looks for a

‘Makefile’).

bjg|fncrd6> run
run 0.5 (Exp) (bjg) [26656]

The first message tells us that we are using run version 0.5 (Experimental, author bjg), and most

importantly its pid, given in square brackets [pid]. If we need to kill a process then we can check

which runscript it belongs to using this number.

Next we see the message from the perl section of the ‘Runfile’ saying, print "hello... ". The

array @runs is also defined at this point, but without any output so we do not see it.

hello from the perl section
#
001 starting... Sat Sep 2 23:19:01 CDT 1995

6 Run

Then the first run 001 from the array @runs begins, noting the start time. The first column gives

the run number, which is useful for grep.

001 submitting create_text_file
001 running create_text_file [26665]

We can now see the two phases of job execution, for create_text_file. First the job is "sub-

mitted" to a notional queue within run — this only means that the job is allowed to start, and

does not have any uncompleted dependencies. After being "submitted" there are a few additional

checks (to make sure there are sufficient processes available to run the job) before the command is

actually run. Its process id is given in square brackets [pid].

If we were to look in the ‘history/’ directory at this point we would see the log file for create_

text_file,

bjg|fncrd6> ls -R history/
001/

history/001:
create_text_file.running

it contains the a record of the commands being executed, the start date and end date,

bjg|fncrd6> more history/001/create_text_file.running
echo "hello world" > 001.txt
start: Sat Sep 2 23:19:02 CDT 1995
....

When the job exits the log file is renamed from ‘create_text_file.running’ to ‘create_text_file.log’.

This is a record that it has completed successfully. If any of the commands in the job failed it

would be renamed ‘create_text_file.err’. At this point run issues a message (noting successful

completion), and the time taken (in this case, the job was so quick it took 0 seconds).

001 create_text_file completed successfully [26665] 0 s

Once the jobs have completed, we get a message giving the overall status of the run. In this

case everything is successful,

001 completed successfully 3 s

Chapter 2: A simple Runfile 7

and the whole run for creating the text file, and counting the words took 3 seconds from start to

finish. At this point, the script goes on and perform the same tasks for runs 002 and 003 before

stopping.

2.5 Errors and Restarts

Let’s imagine that the job failed at some point. Suppose that the filename of the word counting

program wc had been misspelt as ec

count_words: create_text_file
ec -w $run.txt # a typo, should be wc

so that the command would fail,

bjg|fncrd6> ec -l file.txt
bash: ec: command not found

Everything would run as before up to the point where the count_words job starts,

bjg|fncrd6> run
run 0.5 (Exp) (bjg) [27029]
hello from the perl section
#
001 starting... Sun Sep 2 23:30:19 CDT 1995
001 submitting create_text_file
001 running create_text_file [27038]
001 create_text_file completed successfully [27038] 2 s
001 submitting count_words
001 running count_words [27048]
001 count_words FAILED [27048] status 1 time 1 s
001 FAILED 4 s

but in this case the job would fail (with exit status 1). If we look in the history directory at

this point we would see some new files, in addition to the log file from create_text_file (which

succeeded),

bjg|fncrda> ls -R history/
001/

history/001:
FAILED count_words.err create_text_file.log

8 Run

There is an empty file ‘FAILED’, which marks the directory as a lost cause, and an error log file

‘count_words.err’ which contains the output from the failed job count_words,

bjg|fncrda> more history/001/count_words.err
ec -w 001.txt
start: Sun Sep 5 23:30:22 CDT 1995
sh: ec: not found

Once we have looked at the error log file ‘count_words.err’ and figured out that the typo in

the ‘Runfile’ was the problem we can correct it,

count_words: create_text_file
wc -w $run.txt # now correct

and do a "restart",

bjg|fncrda> run -i 001
run 0.5 (Exp) (bjg) [27077]
hello from the perl section
001 previously failed... ignoring error and retrying
#
001 starting... Tue Sep 5 18:14:21 CDT 1995
001 moving existing logs into history/001/00
001 already completed create_text_file
001 submitting count_words
001 running count_words [27087]
001 count_words completed successfully [27087] 1 s
001 completed successfully 2 s

We use two new options when calling run. First, the -i option tells run to ignore any errors that it

has previously encountered (since we have now fixed the cause of them). Without the -i we would

get the message,

001 previously failed... skipping

Secondly, we specify the run number that we want to retry on the command line (001). When

the script runs we note that it first tidies up existing error log files,

001 moving existing logs into history/001/00

by making a subdirectory 00. Subsequent retries would make the directories 01, 02, etc. for old

error log files.

Chapter 2: A simple Runfile 9

It then checks the log files to see which jobs completed successfully and notes that it has already

completed the first step,

001 already completed create_text_file

so it does not need to rerun create_text_file. Now the corrected version of the count_words

job can be submitted,

001 submitting count_words
001 running count_words [27087]
001 count_words completed successfully [27087] 1 s
001 completed successfully 2 s

and this time it runs successfully. The final state of the ‘history’ directory is the same as before,

bjg|fncrda> ls -R history/
001/

history/001:
00/ count_words.log
DONE create_text_file.log

history/001/00:
count_words.err

except for the presence of the subdirectory ‘history/001/00’ which shows that the run had to

be restarted once.

10 Run

Chapter 3: Dealing with Tapes 11

3 Dealing with Tapes

Before using launching into the complexities of controlling a real-world job using a runfile,

let’s first take a look at some of the tape handling utilities that are available to make life easier.

One of the features of using the acpmaps tape system is that it isn’t like a normal filesystem –

and so it doesn’t necessarily integrate with Unix or physics. For example, a tapeset may not be big

enough to hold all the configurations for a given project, so probably it gets extended to multiple

tapes, with different names .1, .2, .3, etc. A script then has to deal with this to know which tape

to use.

There are a couple of utilities called map and tapemap which allow your script to deal with tapes

in a more flexible and Unix-like way.

3.1 Tape Maps

The basic idea is to use a ‘tape-map’ to index the files. This is a text file containing a list of

configuration numbers and the tape file names that they correspond to.

Here is a ‘tape-map’ for the D lattice gauge configurations, ‘Could-09.map’

004000 Could0-09#coul_oooy_6.1_004000
008000 Could0-09#coul_oooy_6.1_008000
012000 Could0-09#coul_oooy_6.1_012000
......
096000 Could0-09#coul_oooy_6.1_096000
100000 Could0-09#coul_oooy_6.1_100000
104000 Could1-09#coul_oooy_6.1_104000
108000 Could1-09#coul_oooy_6.1_108000
.....

We only need to know the configuration number that we are interested in and we can get the

correct tape filename from the map file. It doesn’t matter whether the file is on ‘Could0-09’ or

‘Could1-09’ (note the change at configuration 104000), or even if the configurations are in a strange

order. We could extract the filename for a given configuration number using awk or perl, but there

is a special command called map to save us the trouble,

bjg|fncrd6> map -n 004000 Could-09.map
Could0-09#coul_oooy_6.1_004000

12 Run

Note that you need to specify the configuration with its leading zeros or you will get an error,

bjg|fncrd6> map -n 4000 Could-09.map
Configuration 4000 not found in Could-09.map

That is something which it is easy to forget to do.

Within a shell script, we will need a line which looks something like this,

$gauge_file=‘map -n $conf Could-09.map‘

to get the name of tape file. We don’t have to worry about dividing the configuration number by

the number of files on the tape to find the tape volume number etc, etc, all of which is no fun to

do in a shell.

3.2 Making a map file for existing tapes

We’ll want to make map files for tapes that we already have, and also for tapes which we want to

initialize. When we already have the tape, it’s easy to make an index of the files on it and produce

a map file. All the information that we need is in the ‘CANtapes’ directory.

bjg|fncrd6> more /usr/local/spool/CANtapes/Could0-09
Could0-09 last unmounted: Wed May 3 14:26:52 1995
Directory for 4 volume tape set Could0-09 created on 1993 Oct 1 17:10:34
Drives: [c202][c204][c302][c303]

Date Blksize Blks File Name
1993 Oct 1 17:29:03 32768 1540 Could0-09#coul_oooy_6.1_004000
1993 Oct 1 17:37:59 32768 1540 Could0-09#coul_oooy_6.1_008000
1993 Oct 1 18:10:26 32768 1540 Could0-09#coul_oooy_6.1_012000
1993 Oct 1 18:32:01 32768 1540 Could0-09#coul_oooy_6.1_016000
1993 Oct 1 18:54:08 32768 1540 Could0-09#coul_oooy_6.1_020000
1993 ...

There are some headers and other pieces of information that we don’t need, but there is a tapemap

utility which looks at the ‘CANtapes’ files, gets rid of the junk and produces a tapemap file,

bjg|fncrd6> tapemap Could0-09 Could1-09 Could2-09 Could3-09
004000 Could0-09#coul_oooy_6.1_004000
008000 Could0-09#coul_oooy_6.1_008000
012000

Chapter 3: Dealing with Tapes 13

We can specify all the tapes that we want to index with a filename pattern,

bjg|fncrd6> tapemap ’Could*-09’
004000 Could0-09#coul_oooy_6.1_004000
008000 Could0-09#coul_oooy_6.1_008000
012000

The wildcard ‘*’ needs to be quoted, because the tapemap program is going to look for them in the

‘CANtapes’ directory, not the current directory where we’re running the command.

Obviously, this magic is only going to work if the filenames end with a configuration number

like _001000. Fortunately most of the filenames do.

Sometimes there will be a problem with several files for each configuration being saved on the

same tape. For example there might be,

004000 Could0-09#coul_oooy_6.1_004000
004000 Could0-09#coul_bcccx_6.1_004000

on the same tape. When this happens there isn’t a one-to-one mapping from configuration numbers

to filenames, and the tapemap program will complain about duplicate configurations.

We can get around this by narrowing down our search using the -r regexp option on tapemap,

bjg|fncrd6> tapemap -r ’oooy’ ’Could*-09’
004000 Could0-09#coul_oooy_6.1_004000
008000 Could0-09#coul_oooy_6.1_008000
012000

to restrict the listing to the oooy configurations.

3.3 Making a map file for new tapes

If we need to make a tape map file for tapes which don’t yet exist then we have to prepare the

names of the files that we are going to use.

Suppose we want to generate some new propagators for a B99 run at kappa=0.1423, using

smeared sources (1S). We’ll want to use a tape name like ‘B99qf0.1423_1S’, but since we’ll be

generating 300 configurations we’ll probably need to use several tapes.

14 Run

First of all, let’s make a list of the configuration numbers we’ll be dealing with, using the

newconfigs command,

bjg|fncrd6> newconfigs -n 300 001000 1000
001000
002000
003000
004000
......
299000
300000

The newconfigs command has the form,

newconfigs -n number-of-configs start-config step-size

So in this case, we have generated 300 configuration numbers, starting from configuration 001000,

with a step size (or sweep count) of 1000.

We need this list, so let’s put it into a file (which we’ll call ‘@CONFIGS’) for future reference,

bjg|fncrd6> newconfigs -n 300 001000 1000 > @CONFIGS

Now we can generate a map file for our new filenames, using a command called newtapemap. Let’s

suppose that we want to call each individual file something like,

‘B99qf0.1423_1S.1#B99_qf_1S_d_0.1423_1.57_001000’

where .1 will be a tapeset number (which might be 2, or 3, or higher, depending on how many files

we can fit on a tape), and 001000 is the configuration number.

We can generalize the form of this filename, using the variables $n and $conf to represent the

tape volume and configuration number,

‘B99qf0.1423_1S.${n}#B99_qf_1S_d_0.1423_1.57_${conf}’

We’ll use this general form to tell the newtapemap command the names of our files.

Chapter 3: Dealing with Tapes 15

Finally, we need to know how many files are meant to go on each tape volume. Let’s suppose

that we are going to put 100 propagators on each 2- tape tapeset. This will be an option to the

newtapemap command.

Now we can generate a list of the files we need using the command,

bjg|fncrd6> newtapemap -n 100 \
-f ’B99qf0.1423_1S.${n}#B99_qf_1S_d_0.1423_1.57_${conf}’ \
@CONFIGS

The -n option gives the number of files on each tape volume, and the -f option gives the general

form of the filename. The configuration numbers are taken from the file ‘@CONFIGS’. The output

of the command is a tape map for the 300 configurations in ‘@CONFIGS’,

001000 B99qf0.1423_1S.0#B99_qf_1S_d_0.1423_1.57_001000
002000 B99qf0.1423_1S.0#B99_qf_1S_d_0.1423_1.57_002000
003000 B99qf0.1423_1S.0#B99_qf_1S_d_0.1423_1.57_003000
......
298000 B99qf0.1423_1S.2#B99_qf_1S_d_0.1423_1.57_298000
299000 B99qf0.1423_1S.2#B99_qf_1S_d_0.1423_1.57_299000
300000 B99qf0.1423_1S.2#B99_qf_1S_d_0.1423_1.57_300000

Notice that the tape volume number (given by ${n} has increased automatically from .0 to .2,

along with the configuration numbers (which came from the file ‘@CONFIGS’). We will need to

initialize 3 tapesets (and these will have to be 2-tape tapesets).

The newtapemap command has the form

newtapemap -n files-per-tapeset -f tape-filename config-list

The tape-filename can include two special variables,

Variable$n

This gives the tapeset number (files/files-per-tapeset)

Variable$conf

This gives the configuration number

16 Run

These variables need to be protected from the shell, by enclosing the filename in single quotes

‘tape-filename’, so that the newtapemap program can interpret them itself.

3.4 Tape inits

As a safety feature, there is a command called tapeinit which does the same job as canreserve

tapeset -n, but performs additional checks before initializing a tape. These are to prevent a runaway

script from initializing unwanted tapes with strange tape names.

If we initialize a tape, for example with the command,

tapeinit B99qf0.1423_1S.1

then tapeinit will first check in an authorisation file ‘@INITS’ to see if the tapename is acceptable.

If the tape name is not found then the tape will not be initialized, and tapeinit will stop with an

error.

A suitable authorisation file ‘@INITS’ would contain the lines,

B99qf0.1423_1S.1 -2
B99qf0.1423_1S.2 -2
....

it is just a list of the the tapes that we really do want to initialize, and the number of tapes in the

tapeset, the -n option on canreserve.

Normally it is not necessary to run tapeinit manually (although that is certainly possible).

Tape initialization is typically carried out automatically by the higher level commands archive_

quark_field and archive_gauge_field.

However, the @INITS file must still be there. There is a command to make a suitable @INITS

file, for example,

bjg|fncrd6> newinits -n 2 B99qf0.1423_*.map
B99qf0.1423_1S.1 -2
B99qf0.1423_1S.2 -2
....

bjg|fncrd6> newinits -n 2 B99qf0.1423_*.map > @INITS

Chapter 3: Dealing with Tapes 17

which searches in the map files ‘B99qf0.1423_*.map’ and lists the tapes which they use. The

general form of the command is,

newinits -n volumes FILE > @INITS

where the option -n volumes gives the number for the canreserve -n option, the number of tapes

in the tapeset.

At the moment the filename @INITS is hard-wired into tapeinit (and assumed to be in the

current directory). That restriction could be lifted if required.

18 Run

Chapter 4: New tape commands 19

4 New tape commands

This chapter contains the detailed usage and command-line option information for the new tape

handling commands.

20 Run

4.1 canrm

Commandcanrm

This is actually a disk command, not a tape command

usage: canrm FILE ...

canunlinks the given files on the distributed disks. Refuses to
remove tape files. If multiple filenames are given, then as many as
possible will be removed (i.e. canrm will not exit after the first
failure). An error is returned if any of the files could not be
unlinked.

Chapter 4: New tape commands 21

4.2 canls

Commandcanls

This is actually a disk command, not a tape command

usage: canls [-l] DISK ...

-l long listing, all information in candir output
-u user list files for the specified user

gives a directory listing of a distributed disk. Only files owned by
your effective userid are listed (or the user specified with -u). The
default output can be used directly in shell variables or ‘ ‘ because
it lists the filenames in their simplest form, one per line.

Example: canls disk8b # to list disk8b
canrm ‘canls disk8b | grep B59‘ # to remove all B59 files on disk8b

22 Run

4.3 map

Commandmap
usage: map -n conf tapemap ...

-n conf choose configuration number
-h help

tapemap lookup file to convert from configuration number to filename

Uses a tapemap file to convert a configuration number into an
appropriate filename.

Example, for the tapemap file ’Could-09’:

004000 Could0-09#coul_oooy_6.1_004000
008000 Could0-09#coul_oooy_6.1_008000

$file=‘map -n 008000 Could-09‘ #gives Could0-09#coul_oooy_6.1_008000

The required two column lookup tables can be generated automatically
using ’tapemap’.

Chapter 4: New tape commands 23

4.4 newconfigs

Commandnewconfigs
usage: newconfigs -n configs start sweeps

-n files number of configurations
-h help

start starting configuration number (include leading zeros)
sweeps sweep count between configurations

Generates a list of configuration numbers.

e.g. newconfigs -n 100 004000 2000

004000
006000
008000...

24 Run

4.5 newinits

Commandnewinits
usage: newinits -n volumes FILE ...

-n volumes number of tapes in a set (e.g. 2 or 4)
-h help

FILE file containing maps to tape filenames

Generates an init authorisation file for a set of map files. The init
authorisation file contains a list of tapes which can be initialised,
and the number of tapes in each set (for canreserve name -tapes).

e.g newinits -n 4 B53qf0.1423_d.map
B53qf0.1423_d.1 -4
B53qf0.1423_d.2 -4
......

Chapter 4: New tape commands 25

4.6 newtapemap

Commandnewtapemap
usage: newtapemap -n files -f tapefile FILE

-n files number of files per tape
-f tapefile specify tape filenames using $n and $conf
-h help

FILE file containing list of configuration numbers

Generates a mapping from configuration number to filename for a
general tape file. The file name can include the variables

$n the ’tapeset’ number
$conf the configuration number

This lookup table is needed by the ’map’ command, which converts a
single configuration number to a full filename.

e.g. newtapemap -n 20 -f ’Could${n}-09#coul_oooy_6.1_${conf}’ configs

004000 Could0-09#coul_oooy_6.1_004000
008000 Could0-09#coul_oooy_6.1_008000...

26 Run

4.7 tapeinit

Commandtapeinit
usage: tapeinit TAPESET ...

-h help

initialise the specified tapesets, after checking that the tapeset
does not already exist and looking for permission in an authorisation
file in the current directory. The initialisation file must be called
@INITS.

Chapter 4: New tape commands 27

4.8 tapemap

Commandtapemap
usage: tapemap [-r regexp] tapeset ...

-r regexp select files containing the given perl regular expression
-h help
tapeset specify tapesets, using file pattern

Lists the mapping from configuration number to filename for the given
tapesets. The information is taken from the CANtapes directory. This
lookup table is needed by the ’map’ command, which converts a single
configuration number to a full filename.

e.g. tapemap -r oooy ’Could*-09’

004000 Could0-09#coul_oooy_6.1_004000
008000 Could0-09#coul_oooy_6.1_008000...

The [-r] regexp option can be used to avoid including any spurious
files that happen to be on the tape.

28 Run

Chapter 5: New canopy commands 29

5 New canopy commands

To run canopy programs under run they need to have an interface with command line options,

since it is difficult to use stdin flexibly from a Makefile.

There are perl "wrappers" for most of the existing canopy programs, to convert them to a

command line form.

30 Run

5.1 archive field file

Commandarchive field file
usage: archive_field_file -r recs src dest

-r recs set number of RECORDS_PER_FILE
-f force, delete any existing file and recopy
-h help

src input field file or directory (e.g. disk#filename)
dest output field file

Copies a field file from disk to tape. Skips the copy if the
destination file already exists (unless using -f, force). For safety
it will NEVER canunlink or overwrite anything, even using -f. Using
the -f option will cause the script to exit with a warning if you try
to overwrite existing tape files.

The number of RECORDS_PER_FILE should be 1 for gauge fields and 12 for
quark fields.

For convenience, source directories of disk8a, disk8b, ... will
have the filename of the destination appended automatically.

Example: archive_field_file -r 1 disk8b Could0-09#coul_oooy_6.1_004000

Chapter 5: New canopy commands 31

5.2 archive gauge field

Commandarchive gauge field
usage: archive_gauge_field [-r recs] src dest

-r recs set GAUGE_RECORDS_PER_FILE (defaults to 1)
-f force, delete any existing file and recopy
-h help

src input field file or directory (e.g. disk#filename)
dest output field file

Copies a gauge field file from disk to tape. Skips the copy if the
destination file already exists (unless using -f, force). For safety
it will NEVER canunlink or overwrite anything, even using -f. Using
the -f option will cause the script to exit with a warning if you try
to overwrite existing tape files.

For convenience, source directories of disk8a, disk8b, ... will
have the filename of the destination appended automatically.

Example: archive_gauge_field -r 1 disk8b Could0-09#coul_oooy_6.1_004000

32 Run

5.3 archive quark field

Commandarchive quark field
usage: archive_quark_field [-r recs] src dest

-r recs set FERMION_RECORDS_PER_FILE (defaults to 12)
-f force, delete any existing file and recopy
-h help

src input field file or directory (e.g. disk#filename)
dest output field file

Copies a quark field file from disk to tape. Skips the copy if the
destination file already exists (unless using -f, force). For safety
it will NEVER canunlink or overwrite anything, even using -f. Using
the -f option will cause the script to exit with a warning if you try
to overwrite existing tape files.

For convenience, source directories of disk8a, disk8b, ... will
have the filename of the destination appended automatically.

Example:
archive_quark_field -r 1 disk8b D41qf0.1390_d.1#D41_qf_d_d_0.1390_1.4_004000

Chapter 5: New canopy commands 33

5.4 get field file

Commandget field file
usage: get_field_file -r recs src dest

-r recs set number of RECORDS_PER_FILE
-f force, delete any existing file and recopy
-h help

src input field file (e.g. tape#filename)
dest output field file or directory

Copies a field file from tape to disk. Skips the copy if the
destination file already exists (unless using -f, force).

The number of RECORDS_PER_FILE should be 1 for gauge fields and 12 for
quark fields.

For convenience, destination directories of disk8a, disk8b, ... will
have the filename appended automatically.

Example: get_field_file -r 1 Could0-09#coul_oooy_6.1_004000 disk8b

34 Run

5.5 get gauge field

Commandget gauge field
usage: get_gauge_field [-r recs] [-f] src dest

-r recs set GAUGE_RECORDS_PER_FILE (defaults to 1)
-f force, delete any existing file and recopy
-h help

src input field file (e.g. tape#filename)
dest output field file or directory

Copies a field file from tape to disk. Skips the copy if the
destination file already exists (unless using -f, force).

For convenience, destination directories of disk8a, disk8b, ... will
have the filename appended automatically.

Environment variables: GAUGE_RECORDS_PER_FILE

Chapter 5: New canopy commands 35

5.6 get quark field

Commandget quark field
usage: get_quark_field [-r recs] [-f] src dest

-r recs set FERMION_RECORDS_PER_FILE (defaults to 12)
-f force, delete any existing file and recopy
-h help

src input field file (e.g. tape#filename)
dest output field file or directory

Copies a field file from tape to disk. Skips the copy if the
destination file already exists (unless using -f, force).

For convenience, destination directories of disk8a, disk8b, ... will
have the filename appended automatically.

Environment variables: FERMION_RECORDS_PER_FILE

36 Run

5.7 make 2pt

Commandmake 2pt
usage: make_2pt -t type -g gauge [-n lat] -o dir -t string [-f] [-z]

-q quark1 --src quark2 --snk sf

-m meson specify meson, hh (heavy-heavy), hl (heavy-light)
or ll (light-light)

-g gauge specify input gauge field filename
-q quark1 specify input quark field filename (quark 1)
--src quark2 specify source smeared quark field filenames (quark 2)
--snk sf specify sink smearing field filenames

-t string specify output filename tags (kappa_conf is recommended)
-o dir specify output directory
-z make compressed tar file instead of output directory

-n lattice set lattice size, (e.g. ’12,12,12,24’)

-f force, delete any existing file and recompute [N/A]
-h help

Computes correlators with additional smearing at the sink.

(quark1). snk . (quark2 src)

For light-light mesons the first quark line (quark 1) should be
delta-delta. The second quark line (quark 2) can include smearing at
the source. Neither quark line should include smearing at the sink.

For heavy-heavy mesons the first quark line is not required, as all
the source combinations are calculated.

The source and sink filenames are given as

--src label:qf_filename,label:qf_filename, ...
--snk label:sf_filename,label:sf_filename, ...

where ’delta’ is a possible smearing function filename, e.g.

--src d:disk8b#C51_qf_d_d_0.140_001000,1S:disk8b#C51_qf_1S_d_0.140_001000
--snk d:delta,1S:disk8b#C51_sf_1S_0.140

Environment variables:

LATTICE

Chapter 5: New canopy commands 37

GAUGE_RECORDS_PER_FILE (defaults to 1)
FERMION_RECORDS_PER_FILE (defaults to 12, i.e. all spin-color combinations)
make_2pt_NODES (defaults to 64)
make_2pt_TIME (defaults to 3:00)

38 Run

5.8 make quark

Commandmake quark
usage: make_quark [-t algorithm] -g gauge [-s source] [-q quark] \

-n lattice [-b b.c.] -k kappa -c clover \
[-m sweeps] [-u sweeps] [-p sweeps] \
[-r rel_err] [-a alpha] [-d level]\
outputfile

-t algorithm choose algorithm type (make_quark5, make_quark=default)

-g gauge specify input gauge field filename
-s source specify input source (smearing) filename (default ’none’)
-q quark specify input quark field filename (optional)

-n lattice choose lattice size (e.g. 12,12,12,24)
-b b.c. choose boundary conditions (periodic (default), antiperiodic)
-k kappa choose kappa value for inversion
-c clover choose clover coefficient

-m sweeps maximum number of sweeps (when required, default infinite)
-u sweeps refresh update interval (when required, default 1000)
-p sweeps print interval (when required, default 10)
-a alpha over-relaxation parameter (when required, default 1.0)
-r rel_err convergence criterion for relative error (when required)

-d level set debugging level (when available)
-f force, delete any existing output file and recompute
-h help

outputfile name of output quark field file

Computes a quark propagator for a given gauge field and source term.
Skips the calculation if the output file already exists (unless
forced, using -f). The optional input quark field allows for
’polishing’ existing propagators. The boundary conditions can be
’periodic’, ’antiperiodic’ or a combination, for example,

-b p,p,p,a:23.5

gives a lattice which is antiperiodic in the time direction, with the
boundary between timeslices 23 and 24(=0 on a 12^3x24 lattice). A ’:’
indicates a newline in the input to the quark inverter prompts.

Environment variables:
make_quark_NODES (defaults to 64)
make_quark_TIME (defaults to 6:00)

Chapter 5: New canopy commands 39

5.9 invert method

Commandinvert method
usage: invert_method [OPTIONS] outputfile

-t, --type algorithm choose algorithm type (list algorithms with -t ?)

-g, --gauge file specify input gauge field filename
-s, --source file specify input source (smearing) filename
-q, --quark file specify input quark field filename (optional)

-n, --lattice size choose lattice size (e.g. 12,12,12,24)
-k, --kappa num choose kappa value for inversion
-c, --clover num choose clover coefficient

-m, --max-sweeps sweeps maximum number of sweeps (default 1000)
-p, --print sweeps print interval (default 50)
--rel err convergence criterion for relative error (default 0)

--spins num number of source spins (default 4)
--colors num number of source colors (default 3)

--wilson-r num fermion r parameter (default 1)
--next-r num next neighbor r parameter
--k-ratio num next neighbor kappa ratio, k2/kappa

--accel-k num kappa acceleration parameter
--accel-r num r acceleration parameter
--omega num over-relaxation parameter

-f, --force delete any existing output file and recompute
-h, --help help

outputfile name of output quark field file

Computes a quark propagator for a given gauge field, source term and
starting guess for the quark propagator. Skips the calculation if the
output file already exists (unless forced, using -f). The optional
input quark field allows for ’polishing’ existing propagators.

Many algorithms have been implemented, they can be listed with
invert_method --type ?

Environment variables:
invert_method_NODES (defaults to 64)
invert_method_TIME (defaults to 6:00)

40 Run

5.10 check quark

Commandcheck quark
usage: check_quark -g gauge -s source -q quark \

[-n lattice] [-b b.c.] -k kappa -c clover

-g gauge specify input gauge field filename (default ’none’)
-s source specify input source (smearing) filename (default ’none’)
-q quark specify input quark field filename (default ’none’)

-n lattice choose lattice size (e.g. 12,12,12,24)
-b b.c. choose boundary conditions (defaults to periodic p,p,p,p)
-k kappa choose kappa value for inversion
-c clover choose clover coefficient

-h help

Calculates the relative error of an existing solution of a quark
inversion for a given gauge field and source term. The calculation is
performed in double precision

Environment variables:
check_quark_NODES (defaults to 32)
check_quark_TIME (defaults to 1:00)

Chapter 5: New canopy commands 41

5.11 diff quark

Commanddiff quark
usage: diff_quark [-n lattice] quark1 quark2

-n lattice choose lattice size (e.g. 12,12,12,24)

quark1 specify input quark field filename (default ’none’)
quark2 specify input quark field filename (default ’none’)

-h help

Calculates the differences between two propagators, quark1 and quark2.
The relative error and absolute error are both computed. The relative
error is given by |quark2-quark1|/|quark2|.

Environment variables:
diff_quark_NODES (defaults to 32)
diff_quark_TIME (defaults to 1:00)

42 Run

5.12 make source

Commandmake source
usage: make_source -t type -a params [-n lat -r recs] outputfile

-t type choose from delta, cube, exp1s, gauss, exp2s, exp1px, exp1py,
exp1pz, read_file_real, read_file_complex, gen_exp2s

-a params set parameters (e.g. radius)
-n lat set lattice size, (e.g. ’12,12,12,24’)
-r recs set FERMION_RECORDS_PER_FILE
-f force, delete any existing file and recompute
-h help
outputfile name of output field file

Computes a smearing function using /usr/home/bjg/challenge/canopy/make_source/d860/spread_quark_onogi.
Skips the computation if the output file already exists.

Environment variables:

LATTICE
FERMION_RECORDS_PER_FILE (defaults to 12, i.e. all spin-color combinations)
make_source_SOURCES (defaults to 0,0,0,0)
make_source_NODES (defaults to 64)
make_source_TIME (defaults to 1:00)

Chapter 5: New canopy commands 43

5.13 make wf

Commandmake wf
usage: make_wf [-n lat] -c config -o dir -t string [-f] [-z] quark1 [quark2]

-c config specify config id (e.g. 001000)
-t string specify output filename tags (kappa_config is recommended,

wf_config default)
-o dir specify output directory
-z make compressed tar file instead of output directory

-n lattice set lattice size, (e.g. ’12,12,12,24’)

-f force, delete any existing file and recompute [N/A]
-h help

quark1 specify input quark field filename (quark 1)
quark2 specify input quark field filename (quark 2, if required)

Computes the wavefunctions of mesons made from the two quark
propagators, quark1 and quark2.

wf(r) = sum_x quark1(x) Gamma quark2(x+r) exp(-ip(x+r))

If quark2 is not specified then the wavefunction of quark1 with itself
is computed.

wf(r) = sum_x quark1(x) Gamma quark1(x+r) exp(-ip(x+r))

The output wavefunction files are pi_wf_config and ro_wf_config by default

Environment variables:

LATTICE
GAUGE_RECORDS_PER_FILE (defaults to 1)
FERMION_RECORDS_PER_FILE (defaults to 12, i.e. all spin-color combinations)
make_wf_NODES (defaults to 64)
make_wf_TIME (defaults to 3:00)

44 Run

Chapter 6: New unix utilities 45

6 New unix utilities

This chapter describes some utilities which are convenient for dealing with jobs, their logfiles

and output.

46 Run

6.1 tardir

Commandtardir
usage: tardir [-h] [-f] directory ...

-f fast, don’t wait before deleting
-h help

tars up the specified directories, verifies the tar files, and then
deletes the original directories. The directories can be absolute or
relative pathnames, with an optional trailing ’/’.
The tarfile is left just above the directory, ready for untarring.

e.g. tardir DATA_TREE/001000/
converts the directory name DATA_TREE/001000/ to DATA_TREE/001000.tar.gz

The tarfiles are compressed (tar.gz) automatically.

Tries to do things safely. There is a default 30 second delay before
the deletion, to give you time to interrupt. This can be switched off
with the -f option.

Chapter 6: New unix utilities 47

6.2 watch

Commandwatch
usage: watch [directory|file] ...

-t
-h help

Tails all files and directories, including newly created files. Tailing
a directory searches all subdirectories recursively (using find).

May get a bit slow on really large directory trees. Be selective about
what you tail. To prevent the program becoming a memory hog, as it
watches more and more files, it will automatically exit after 10
minutes.

When started it displays only those files which have been modified
within the last hour.

48 Run

6.3 dt

Commanddt
usage: dt [-h] FILE ...

-h help

Takes the ages of the specified files, sorts them and computes the
differences to give the times between files. This can be used to
measure how rapidly the files are being produced.

Chapter 6: New unix utilities 49

6.4 rprof

Commandrprof
usage: rprof [-d] [-e NUM] FILE ...

-d print times as ’per day’
-e NUM estimate time to finish NUM jobs
-s NUM assume NUM streams (default 1)
-h help

Parses the run LOG output to produce profiling information. The
average time taken to complete each job is printed, either in seconds
or in ’per day’ form. e.g. 3600 seconds per job = 24 per day

50 Run

6.5 hms

Commandhms
usage: hms [-h] [FILE] ...

-h help

A filter which converts log files to a more readable form by changing
large numbers of seconds to (days), hours, minutes, seconds.

The forms ’# seconds’, ’# secs’ and ’# s’ are recognised as times in seconds.
Integer times are always recognised and decimals of the form ’1.23
seconds’ work too, but scientific formats do not.

Chapter 6: New unix utilities 51

6.6 logdate

Commandlogdate
usage: logdate [message]

-h help

prints a logging date in the form ’message’date.

Example:
logdate ’# start: ’
start: Wed Sep 13 13:55:59 CDT 1995

52 Run

6.7 stream

Commandstream
usage: stream -n streams FILE ...

-n streams number of streams
-h help

FILE file to be split into streams

takes inputs files and splits them into ’streams’, writing new files
FILEa, FILEb, FILEc... It has an effect which is orthogonal to ’split’.

e.g. streams -n 3 txt produces

txta txtb txtc
line1 line2 line3
line4 line5 line5
...

Chapter 6: New unix utilities 53

6.8 fixuphistory

Commandfixuphistory
usage: fixuphistory [-h] DIR ...

-h help

DIR history directory to be fixed

Fixes up inconsistencies in a history directory after a system
crash. Searches for ’.running’ files which are associated with
processes which have died -- renames them to ’.err’, and marks the
directory as FAILED (as a warning).

Example: bjg|fncrdm> fixuphistory 0061/history
searching 0061/history/002000
0061/history/002000/read_ahead_gauge_field.running has crashed
......
marking 0061/history/002000 as FAILED
fixing 0061/history/002000/read_ahead_gauge_field.running
bjg|fncrdm>

54 Run

Chapter 7: Run 55

7 Run

Commandrun
usage: run [options] target ...

-C DIRECTORY change to DIRECTORY before doing anything
-d debug, print lots of debugging information
-f FILE read FILE as a runfile
-i ignore errors from commands, retry anyway
-r ignore checkpoint files, restart from scratch
-k keep going when some targets can’t be made
-n don’t actually run any commands; just print them
-v print the version number and exit.

-h help

7.1 Stopping everything in an emergency

7.1.1 Allowing existing jobs to continue running

When some disaster occurs you will want to shut down the script quickly. This is done by

putting the script into HALT mode. When the script receives a HALT message, it will immediately

stop launching new jobs. It will wait for any jobs that are still running, to keep an accurate record

of whether they actually finished without error (in which case it will not be necessary to rerun

them).

There are several ways to send a HALT message to the script,

kill -INT pid using the pid of the runscript.

Create a control file, if you are using std_control_hooks.pl containing the lines

shut down
print "sending halt message...\n";
$run_status = ’HALT’ ;

For a script running in the background, bring the script to the foreground, using fg, press

Control-C once (and once only), and then put the script into the background again, using bg.

56 Run

Once the runscript has received the halt message it will stop submitting new jobs. However, it

will continue to wait for those jobs which are currently executing. Don’t start a new runscript until

the current one has actually finished. You’ll know this has happened when you see the message

FAILED or HALT on a line on its own,

......
094000 check_quark_2S completed successfully [18768] 334 s
094000 2pt_analysis completed successfully [18955] 920 s
094000 FAILED 962 s

......
094000 check_quark_2S completed successfully [18768] 334 s
094000 2pt_analysis completed successfully [18955] 920 s
094000 HALT
mailing bjg,ask with subject: ’runscript exited’

7.1.2 Killing all the jobs currently running.

This method will kill all the jobs running, but ensure that the history directory remains up to

date. This is to be used in emergencies when the jobs cannot be allowed to continue running, or

when the host machine is about to be rebooted.

First tell the script to go into HALT mode. For example, assuming the runscript process number

is pid, just do

kill -INT pid

as before. You can find this pid by looking in the appropriate log output

bjg|fncrdm> grep "^run" LOG* | tail
.....
run 0.16 (Exp) (bjg) [19101]

where the pid appears in square bracket, or by checking your running processes with,

bjg|fncrdm> ps -fu bjg | grep "run "
bjg 19101 9734 0 16:07:13 pts/28 0:01 /usr/bin/perl /usr/home/bjg/challenge/runscript/v3/bin/run streams/0
bjg 21971 12038 1 16:18:49 pts/21 0:00 grep run

Chapter 7: Run 57

Once the script has been put into HALT mode, send a TSTP signal to all the running jobs controlled

by that script using

kill -TSTP pid

for the pid of the runscript itself. The runscript will then pass this signal on to the jobs that

it has started, so there is no need to kill each process individually, the run script will do this

automatically when it receives the TSTP message. The signal TSTP is passed on to all the jobs as

the equivalent of pressing Control-c. You should watch the log output and directory to make sure

that all the jobs respond, by failing. If not, send the TSTP signal to run again until they do. Some

tape jobs will persist because they cannot distinguish a stop signal from a SCSI read error (which

they retry). They will give up after several attempts, so you may need to send the signal this many

times. This may get fixed in future version of cancopy.

Note, signals are complicated. Sometimes these things don’t work. There is a difference when

you are trying to kill jobs that you started in your current session, because your shell will interfere

with the signals. The safest thing to do is log out and log in again and then kill them.

7.2 Restarting after a system crash

After a complete system crash, individual processes will have failed without being able to send

their exit status back to run. This means that the history directory will be out of date. In

particular, some jobs will appear to be running, even though they no longer exist.

The following example shows the effects of a real system crash – according to the history directory

many processes appear to be running (although in fact none of them exist),

bjg|fncrd6> find history/ -name ’*.running’
history/132000/invert_kappa_d.running
history/270000/invert_kappa_2S.running
history/168000/invert_kappa_d.running
history/168000/invert_kappa_1S.running
history/218000/read_ahead_gauge_field.running
history/218000/invert_kappa_d.running
history/218000/invert_kappa_1S.running
history/218000/archive_gauge.running

To restart the job, these incorrect files should be removed. There is a fixuphistory command to

do this automatically,

58 Run

bjg|fncrdm> fixuphistory ./history
searching ./history/132000
./history/132000/invert_kappa_d.running has crashed
......
marking ./history/132000 as FAILED
fixing ./history/132000/invert_kappa_d.running
bjg|fncrdm>

At the simplest level, this can all be done by hand. If you have a rename command available

you can do,

ren "*.running" "#1.err"

in each affected directory to convert all the ‘running’ files into ‘err’ files. If you have gnu-find

this can (approximately) be done automatically with

find . -name ’*.running’ -exec mv {} {}.err \;

This isn’t possible with the version of find that is sold with most systems because they often only

substitute for the filename characters {} once, you just just end up with a single file called ‘{}.err’.

Dumb or what. Obviously this is because the companies are only interested in your money and

locking you into their products through incompatibility, not in actually providing good software.

If they were interested in providing good software they would just ship the gnu utilities as part of

their standard installation. Anyway, once the history directory correctly represents the state of the

run just before the crash, the jobs can be restarted as normal, with

run

If there are ‘FAILED’ files in any of the directories then the -i option can be used to restart them.

After a system crash ‘FAILED’ files are not usually generated because the crash happens too quickly.

However, run will figure out what to do once the history directory is correct. If you decide that

rerunning a given job will be impossible then you can add a ‘FAILED’ file by hand using,

touch FAILED

Chapter 8: Runfile 59

8 Runfile

8.1 Makefile Section

8.1.1 Exiting

The set of commands should try to avoid using exit commands . For example, a bad way to

do things is

if [$file = "none"] ; then
exit # this is a bad way to exit

fi
get_field_file $file ...

The reason is that additional code is appended to your commands to do things like renaming the

.running file to .log, showing successful exit status. The extra commands look something like

this,

if [$file = "none"] ; then
exit # this is a bad way to exit

fi
get_field_file $file ...
these commands are automatically appended by run
echo "finished at " ‘date‘
mv thisfile.running thisfile.log

If the code exits prematurely then these housekeeping commands will not be executed. Normally

run will fix up these files automatically when it notices that they have not been renamed, and issue

a warning. However, if your run process has died then the history files could get out of date.

It is simplest to avoid exiting in the middle of the commands. For example, in this case we can

easily rewrite the commands in a way which eliminates any potential problems.

if [$file != "none"] ; then
get_field_file $file ... # rewriting the ’if’ statement is much better

fi

60 Run

8.2 Tips and Tricks

By default, the first occurrence of a target in a Runfile is used. This allows you to override

’wildcard’ targets, such as,

make_source_d:
echo ’no need to make a delta source!’

make_source_${smearing}:
make_source

where the special case make_source_d will be picked up before the wildcard make_source_...

catches it.

However, sometimes it’s useful to overide a wildcard, while still making use of its definition. In

the special case where you don’t include any actions for a specific target, then the Runfile will fall

through to any wildcards which match.

For example, to put files onto a tape in the order gauge, d, 1S, 2S, we could use the following

rules,

archive_kappa_d: archive_gauge invert_kappa_d
archive_quark_field $disk_qf{’d’} $tape_qf{’d’}

archive_kappa_1S: archive_kappa_d invert_kappa_1S
archive_quark_field $disk_qf{’1S’} $tape_qf{’1S’}

archive_kappa_2S: archive_kappa_1S invert_kappa_2S
archive_quark_field $disk_qf{’2S’} $tape_qf{’2S’}

which will work, but forces us to explicitly specify the action for each case. We can get the same

effect more compactly by allowing the specific cases to fall through to a more general rule,

archive_kappa_d: archive_gauge
archive_kappa_1S: archive_kappa_d
archive_kappa_2S: archive_kappa_1S
archive_kappa_${smearing}: invert_kappa_${smearing}

archive_quark_field $disk_qf{$smearing} $tape_qf{$smearing}

In this case, there are no actions for the specific cases archive_kappa_d, archive_kappa_1S

and archive_kappa_2S — they all fall through to the general wildcard target archive_kappa_

Chapter 8: Runfile 61

${smearing}. The dependencies of the specific and wildcard targets are combined appropriately

to have the same effect as in the longer explicit form. This can be very convenient.

8.2.1 STREAMS

be tape oriented

8.2.2 READ AHEAD

usually worth it

8.3 Useful lines to include in the perl header

8.3.1 Checking for correct userids

To make sure you’re ’su’ed to run a job (so that a disk allocation is available to you) you can

include a check in the perl header. For example, the following extract of code,

die "please su to pbm, this script uses disk8d!\n" if getpwuid($<) ne ’pbm’ ;

will exit the script with an error if your userid is not ’pbm’. The function getpwuid returns the

userid of the current effective user, $<. See the Perl Manual for more details.

62 Run

Chapter 9: User hooks and Variables 63

9 User hooks and Variables

This chapter lists some of the variables and hooks available to the user. The best way to see

how to use these is to look at the examples in the library functions.

9.1 Variables

There are some useful internal variables which are usually available. Modifying them is not

recommended, as it could produce unpredictable results.

The variables can depend on the current context, for example when calling ’user pid failed hook’

$job will be the name of the job which has just failed, rather than the most recently launched job.

Variable$run

gives the current run number

Variable@runs

is the list of all valid runs

Variable$logdir

controls the directory where log files appear.

Variable$job

is the name of a target, in the current context

Variable$run status

controls the overall behaviour of the outer loop. The value "HALT" prevents any further

jobs being submitted.

Variable$debug

causes verbose debugging information to be printed on stdout if set.

Variable@queue

an array containing the targets which have been submitted but are not yet running.

64 Run

Variable%running{$pid}=$job

An array of running jobs, indexed by pid.

9.2 Hooks

The following hooks are available to modify the behavior of run. To avoid conflicts it is advisable

to name any new variables in the hooks with the prefix $user_.... All the internal variables are

available in the hooks. Modifying them is not recommended, as it could produce unpredictable

results.

Functionuser control hook

called before jobs are launched

Functionuser exit hook

called before script finally exits

Functionuser job hook

called before tests are made to see if a job can be submitted

Functionuser limit hook

max pids used pids free pids called when the $user_limit switches on

Functionuser pid done hook

called after a launched process exits successfully

Functionuser pid failed hook

called when a launched process fails

Functionuser pid limit hook

called when the $user_pid_limit switches on

Functionuser run control hook

called at the start of each new run in the outer loop

Chapter 9: User hooks and Variables 65

Functionuser run done hook

called after the successful completion of a run in the outer loop

Functionuser run failed hook

called when a run in the outer loop fails

Functionuser run start hook

called at the start of a run when the message "starting..." appears

Functionuser sig hook

called whenever the script catch a signal (held in $sig).

66 Run

Chapter 10: Libraries 67

10 Libraries

There are some standard libraries to perform useful and common tasks. They extend run by

making use of hooks.

A library can be included in your own ‘Runfile’ with a require command in the perl section,

for example,

:: perl

require ’std_email_hooks.pl’ ; # send email to user if job fails

Since the user_hooks are set by these libraries, you should append your own commands to the

hooks, rather than redefining them, if you want to add extra features.

68 Run

10.1 B lattice defaults

Include filestd B lattice defs.pl

contains default parameters for runs on the B lattice. It defines the environment

variable LATTICE=12,12,12,24 and reasonable TIME and NODE allocations for make_

quark, make_source and make_2pt. These settings are not optimal, they are fairly

generous on TIME. You can quickly get a job up and running using these defaults

(without worrying too much that it will crash from a TIMEOUT), and then optimise the

parameters once you have some timing information.

reasonable default parameters for B lattice runs

$ENV{"LATTICE"} = "12,12,12,24" ;

Creating smearing files
$ENV{"make_source_NODES"} = "12" ;
$ENV{"make_source_TIME"} = "3:00" ;

Quark inversion
$ENV{"make_quark_NODES"} = "12" ;
$ENV{"make_quark_TIME"} = "4:00" ;

Checking inversion
$ENV{"check_quark_NODES"} = "12" ;
$ENV{"check_quark_TIME"} = "0:30" ;

Comparing with previous propagators
$ENV{"diff_quark_NODES"} = "12" ;
$ENV{"diff_quark_TIME"} = "0:30" ;

Calculation of correlators
$ENV{"make_2pt_NODES"} = "12" ;
$ENV{"make_2pt_TIME"} = "0:30" ;

Calculation of wavefunctions
$ENV{"make_wf_NODES"} = "12" ;
$ENV{"make_wf_TIME"} = "0:30" ;

Chapter 10: Libraries 69

10.2 C lattice defaults

Include filestd C lattice defs.pl

contains default parameters for runs on the C lattice. It defines the environment

variable LATTICE=16,16,16,32 and reasonable TIME and NODE allocations for make_

quark, make_source and make_2pt. These settings are not optimal, they are fairly

generous on TIME. You can quickly get a job up and running using these defaults

(without worrying too much that it will crash from a TIMEOUT), and then optimise the

parameters once you have some timing information.

reasonable default parameters for C lattice runs

$ENV{"LATTICE"} = "16,16,16,32" ;

Creating smearing files
$ENV{"make_source_NODES"} = "16" ;
$ENV{"make_source_TIME"} = "3:00" ;

Quark inversion
$ENV{"make_quark_NODES"} = "32" ;
$ENV{"make_quark_TIME"} = "6:00" ;

Checking inversion
$ENV{"check_quark_NODES"} = "32" ;
$ENV{"check_quark_TIME"} = "0:30" ;

Comparing with previous propagators
$ENV{"diff_quark_NODES"} = "32" ;
$ENV{"diff_quark_TIME"} = "0:30" ;

Calculation of correlators
$ENV{"make_2pt_NODES"} = "32" ;
$ENV{"make_2pt_TIME"} = "1:00" ;

Calculation of wavefunctions
$ENV{"make_wf_NODES"} = "32" ;
$ENV{"make_wf_TIME"} = "0:30" ;

1;

70 Run

10.3 D lattice defaults

Include filestd D lattice defs.pl

contains default parameters for runs on the D lattice. It defines the environment

variable LATTICE=24,24,24,48 and reasonable TIME and NODE allocations for make_

quark, make_source and make_2pt. These settings are not optimal, they are fairly

generous on TIME. You can quickly get a job up and running using these defaults

(without worrying too much that it will crash from a TIMEOUT), and then optimise the

parameters once you have some timing information.

reasonable default parameters for D lattice runs

$ENV{"LATTICE"} = "24,24,24,48" ;

Creating smearing files
$ENV{"make_source_NODES"} = "24" ;
$ENV{"make_source_TIME"} = "3:00" ;

Quark inversion
$ENV{"make_quark_NODES"} = "162" ;
$ENV{"make_quark_TIME"} = "6:00" ;

Checking inversion
$ENV{"check_quark_NODES"} = "128" ;
$ENV{"check_quark_TIME"} = "0:30" ;

Comparing with previous propagators
$ENV{"diff_quark_NODES"} = "128" ;
$ENV{"diff_quark_TIME"} = "1:00" ;

Calculation of correlators
$ENV{"make_2pt_NODES"} = "128" ;
$ENV{"make_2pt_TIME"} = "3:00" ;

Calculation of wavefunctions
$ENV{"make_wf_NODES"} = "128" ;
$ENV{"make_wf_TIME"} = "1:00" ;

1 ;

Chapter 10: Libraries 71

10.4 Control hooks

Include filestd control hooks.pl

allow you to modify Runfile parameters while the script is running. It searches for

a control file called, ‘NAME.control’ if you invoked the script with run NAME.

Alternatively the files ‘PID.control’ and ‘control’, where PID is the pid of the top-

level run command, are always available.

Note that if you have several scripts running in the same directory they will all read

the file ‘control’.

If a control file exists, it is regarded as arbitrary perl code and executed. A typical

control file might contain the lines,

don’t start any more jobs, then wait for running jobs to finish
$run_status="HALT" ;

to shut down a script as soon as possible.

A control file will be executed once. Its modification time is recorded to prevent it

being executed many times. If necessary you can reactivate a control file with a touch.

When a script is started all existing control files will be read. This means that a "halt"

control file will always shutdown subsequent scripts immediately unless the control file

is renamed or deleted.

A good use of this feature is to modify the number of nodes being used if machine

conditions change. For example, if you are running with small numbers of nodes and

the machine suddenly becomes empty you can use

print "# updated nodes to 128\n";
$ENV{’make_quark_NODES’}=128 ;

to make use of the empty nodes without stopping and restarting the script. This change

becomes effective immediately. It is guaranteed to occur before the next job that is

launched.

check for ’control’ file
if it exists, execute the perl commands in it and rename it ’control.done’

72 Run

$user_control_hook= q^

for $user_control_file (("$ARGV[0].control", "$$.control", "control")){

next if ! -f "$user_control_file" ;

@user_control_stat=stat($user_control_file) ;
$user_control_mtime=$user_control_stat[9] ;

next if (
$user_control_mtime == $user_control_last_mtime{$user_control_file}
) ;

$user_control_last_mtime{$user_control_file} = $user_control_mtime ;
$user_control_run_status=$run_status ;

print "# reading $user_control_file...\n" ;
do "$user_control_file" ;
if ($@) {

warn "# control: $@\n" ;
} else {

print "# done\n";
} ;
print "# run status $run_status\n" if

($run_status ne $user_control_run_status) ;

}

^ ;

1 ;

Chapter 10: Libraries 73

10.5 Email hooks

Include filestd email hooks.pl

sends you email when things go wrong. It tends to send too much.

require "ctime.pl" ;

send the error log if a process fails
$user_pid_failed_hook = q^

push(@err_mail_msg,"===> ${logdir}/${run}/${job}.err <===") ;
push(@err_mail_msg,join("",‘cat ${logdir}/${run}/${job}.err‘)) ;
&mail("$ENV{’USER’}","process failed","$run $job failed\n\n" .

‘cat ${logdir}/${run}/${job}.err‘) if $mail_verbose ;
^ ;

send a short message if a run fails
$user_run_failed_hook = q^

unshift(@err_mail_msg,"run $run failed\n") ;
&mail("$ENV{’USER’}","bad news","run $run failed") if $mail_verbose ;

^ ;

add to summary message if a run fails
$user_run_done_hook = q^

push(@err_mail_msg,"run $run completed successfully\n") ;
^ ;

send a message if the whole script has exited
$user_exit_hook = q^

&mail("$ENV{’USER’}","runscript exited",join("\n",@err_mail_msg)) ;
^ ;

sub mail {
local ($user,$subject,$message)=@_ ;
$user || do { $user="$ENV{’USER’}" ; } ;
$subject || do { $subject="message from run script" ;};
print "# mailing $user with subject: ’$subject’\n" ;

if (! $dry_run) {
open (MAIL,"| /usr/sbin/Mail -s ’$subject’ $user") ;

} else {
open (MAIL,">&STDOUT") ;
print MAIL "===> Mail Message <===\n" ;

} ;

print MAIL "Running: [run] @ARGS\n" ;
print MAIL "Script: $0 [$$]\n" ;
print MAIL "Directory: ",‘pwd‘ ;

74 Run

print MAIL "Start time: ",&ctime($^T) ;
print MAIL "Exit time: ",&ctime(time),"\n" ;
print MAIL "Message: $message\n" if $message ;

close(MAIL) ;
} ;

1 ;

Chapter 10: Libraries 75

10.6 Signal hooks

Include filestd sig hooks.pl

will HALT the script when any INT signal is received (e.g. Control-C or kill -INT ...).

A halt means that no further jobs will be launched, but that the script will wait for

existing jobs to finish.

std_sig_hooks.pl -- deal with signals
#

$user_sig_hook = q^

for $user_sig_hook_pid (keys %running) {
print "$user_sig_hook_pid\t$running{$user_sig_hook_pid}\n" ;

} ;

&hook(’user_control_hook’) ;

handle interrupt signals from the user
#
if ($sig eq "INT") {

$run_status=’HALT’ ;
print "# halt (due to SIGINT)\n" ;

} ;

attempt to deal with an imminent shutdown signalled by SIGTERM
#
if ($sig eq "TERM") {

$run_status=’HALT’ ;
print "# halt (due to SIGTERM)\n" ;
print "# initiating shutdown sequence...\n" ;
$std_sig_hooks_killed = kill ’TSTP’, $$;
print "# sent SIGTSTP to $std_sig_hooks_killed processes\n" ;

} ;

^ ;

1 ;

76 Run

10.7 Standard log directory hooks

Include filestd log dir hooks.pl

Sets a default log directory of ‘history/’ unless there is a user-specified value of

$logdir in the perl header.

In the case of a dry run, using the option -n, the log directory become $logdir.dryrun.

use a log directory called ’history’ or ’history.dryrun’

$user_setup_logdir_hook=q^

$logdir=’history’ unless $logdir ; # keep logs in ’history’ unless specified

if ($dry_run) {
$logdir="$logdir.dryrun" ; # send dry run logs to a separate directory

} ;

^ ;

1 ;

Chapter 10: Libraries 77

10.8 Standard read ahead

Include filestd read ahead.pl

Prepares an array $next_run{$run}, giving the next runs for each run. This allows

convenient reading ahead for the next run to save time.

std_read_ahead.pl
#
prepare array of $next_run{$run} for specified runs

$user_start_hook=q^

print "# run next_run\n" if $debug ;

for ($i=0 ; $i < scalar(@runs) ; $i++) {
$next_run=$runs[$i+1] ;
$next_run{$runs[$i]}=$next_run ;
print "$runs[$i] $next_run{$runs[$i]}\n" if $debug ;

} ;

^ ;

1 ;

78 Run

10.9 Standard limit hooks

Include filestd limit hooks.pl

prints a warning when the pid limit is reached (typically 20 pids below the maximum

number)

print a warning message if the pid limit is reached

$user_pid_limit_hook=’
print "# warning: pid limit reached, $user_pid_limit\n" ;

Chapter 10: Libraries 79

10.10 Standard hooks

Include filestd hooks.pl

loads some of the above libraries. A convenience feature.

require "std_control_hooks.pl" ;
require "std_sig_hooks.pl" ;
require "std_logdir_hooks.pl" ;
require "std_limit_hooks.pl" ;

80 Run

Chapter 11: An example runfile 81

11 An example runfile

In this chapter we will examine a real Runfile for generating wilson propagators and correlators

on a small 8^3x16 lattice. The order of steps involved is

make sources (d,1S,2S)
invert (d,1S,2S)
generate smeared smeared correlators (d,1S,2S)x(d,1S,2S)

Here is the full Runfile,

runfile goes here

Beginning with the perl section, we define the list of runs by reading in the file ‘@CONFIGS’,

:: perl
open(CONF,"<@CONFIGS") ; chop(@runs = <CONF>) ; close (CONF) ;

This is required – the variable @runs must be defined so that we know what runs to do. Now

we read in some useful library routines, to set up defaults for the B lattice, email notification and

other useful things,

require ’std_B_lattice_defs.pl’ ; # import optimum canopy settings
require ’std_hooks.pl’ ; # standard hooks
require ’std_email_hooks.pl’ ; # send email to user if job fails

Now we need to set the lattice size, since the B lattice defaults are good enough for the number

of nodes we need, but the lattice size (which is kept in the environment variable LATTICE) needs to

be changed,

$ENV{’LATTICE’}="8,8,8,16" ; # actually running on 8^3x16

Next we set the users who will get email when the job fails. This is kept in the environment variable

USER

$ENV{’USER’}=’bjg,onogi’ ;

82 Run

To prevent the job from running under the wrong userid we check the current user using the

perl expression getpwuid($<),

die "please su to bjg, this script uses disk8b!\n" if getpwuid($<) ne ’bjg’ ;

Now we set up the perl variables that we need to specify the job, the directory name b5.5,

kappa value and clover coefficient,

$DIR = "b5.5" ;
$kappa = "0.175" ;
$clover = "0.0" ;

To define the smearing parameters we use a perl associative array, with the keys ’1S’ and ’2S’,

$smearing_params{’1S’} = "0.75" ;
$smearing_params{’2S’} = "0.466,0.429" ;

Now we define user_run_start_hook, which will be called whenever a new configuration is

started. A hook is a piece of code which allows some user-defined commands to be executed at a

given point in a program.

In this definition we need to prevent variable substitution. We want the variables such as $tape_

gf (which gives the current gauge file) to be redefined each time the hook is eval’ed. If the variables

are substituted directly at this point then they cannot change as the $run variable changes.

To prevent variable substitution it is necessary to use single quotes ”. However in general we

might also want to single quotes in our definition of user run start hook – we could do this by

escaping the quote characters. Here we make use of a perl trick by using q^ which temporarily

changes the single quote character ’ to a ^ (or whatever other character you choose, e.g. q/, q%,

etc.

Everything that appears between q^ and the final ^ is included in the definition unchanged, i.e.

variables at not substituted at this point.

$user_run_start_hook = q^
$conf=$run ;

Chapter 11: An example runfile 83

chop($tape_gf = ‘map -n ${run} Tapes/Coulb.map‘) ;
($tapeset_gf,$file_gf) = split("#",$tape_gf) ;
$disk_gf = "\"coulomb/$file_gf\"" ;
$disk_sf{’d’} = "none" ;
$disk_sf{’1S’} = "disk8b#${DIR}_sf_${kappa}_1S" ;
$disk_sf{’2S’} = "disk8b#${DIR}_sf_${kappa}_2S" ;
$disk_qf{’d’} = "disk8b#${DIR}_qf_d_d_${kappa}_${conf}" ;
$disk_qf{’1S’} = "disk8b#${DIR}_qf_1S_d_${kappa}_${conf}" ;
$disk_qf{’2S’} = "disk8b#${DIR}_qf_2S_d_${kappa}_${conf}" ;

^

In this definition we first define a $conf variable for convenience,

$conf=$run ;

Then we read in appropriate tape file name for this run, using the map command on tapemap

‘Tapes/Coulb.map’ within backquotes,

chop($tape_gf = ‘map -n ${run} Tapes/Coulb.map‘) ;

Surrounding everything with a chop command is the perl way of removing the trailing newline

from the end of the filename returned by the map command.

Now we split the tape filename (which looks something like ‘Coulb1-10#Coul_5.5_8^3x16_gf_001000’)

into the tapeset and file,

($tapeset_gf,$file_gf) = split("#",$tape_gf) ;

Now we can construct all the other filenames that we will need,

$disk_gf = "\"coulomb/$file_gf\"" ;
$disk_sf{’d’} = "none" ;
$disk_sf{’1S’} = "disk8b#${DIR}_sf_${kappa}_1S" ;
$disk_sf{’2S’} = "disk8b#${DIR}_sf_${kappa}_2S" ;
$disk_qf{’d’} = "disk8b#${DIR}_qf_d_d_${kappa}_${conf}" ;
$disk_qf{’1S’} = "disk8b#${DIR}_qf_1S_d_${kappa}_${conf}" ;
$disk_qf{’2S’} = "disk8b#${DIR}_qf_2S_d_${kappa}_${conf}" ;

84 Run

Note that we have to use some trickery on definition of $disk_gf. This name contains the

characters 8^3x16. The existence of a ^ character in a filename really confuses the bourne shell

parser so we have to quote the filename with double quotes, \"$filename\".

Moving on from the perl header to the main script, we simply list the commands we would like

to execute (their definitions appear in the makefile section which follows). We prefix the commands

with a % sign which shows that they refer to makefile commands.

:: script
%make_d_source
%make_1S_source
%make_2S_source

%invert_kappa_d
%invert_kappa_1S
%invert_kappa_2S

%2pt_analysis

%clean

It is possible to include normal shell commands (not prefixed by a percent sign %) in this section

too but it is not usually necessary.

The makefile section explicitly lists all the commands needed to perform the job.

First we consider making the sources,

:: makefile
make_d_source:

echo ’no need to make a delta source’

make_1S_source:
make_source -t exp1s -a $smearing_params{’1S’} $disk_sf{’1S’}

make_2S_source:
make_source -t gen_exp2s -a $smearing_params{’2S’} $disk_sf{’2S’}

Chapter 11: An example runfile 85

Of course there is no need to make a delta source, but for symmetry reasons it is neater to

regard a delta function as a source that is on the same level as the real sources 1S, 2S which have

to be created.

If we make all the sources equivalent then we can write a single rule for doing the inversion,

invert_kappa_${smearing},

invert_kappa_${smearing}: make_${smearing}_source
invert_method -t minimum_residual_red_black \

-k 0.175 -n 8,8,8,16 \
-g $disk_gf \
-s $disk_sf{$smearing} \
-k $kappa -c $clover \
-m 1000 -p 100 -rel 0 \
--wilson-r 1 --next-r 0 --k-ratio 0 \
--accel-k 0 --accel-r 0 --omega 1 \
$disk_qf{$smearing}

this can only begin once the corresponding "make source" command is done. We choose a lot

of parameters to control the inversion, we can split these over several lines using the backslash \

continuation character. Note that variables are substituted as you would expect (this is why we

had to be careful with the definition of user_run_start_hook) – the associative arrays are handled

properly too. We only need to put curly braces around variables where they are associative arrays

or if it would be ambiguous if we didn’t include them (e.g. is $a b equivalent to ${a} b or ${a b}

?? if a and a b are valid variables then both are possible and curly braces are needed to make

everything unambiguous).

The 2pt analysis step can only proceed when all three inversions have finished,

2pt_analysis: invert_kappa_d invert_kappa_1S invert_kappa_2S
make_2pt -m ll \

-g $disk_gf \
-o DATA_TREE/2-pt/${conf} \
-t ${kappa}_${conf} \
-q $disk_qf{’d’} \
-z \
--src d:$disk_qf{’d’},1S:$disk_qf{’1S’},2S:$disk_qf{’2S’} \
--snk d:delta,1S:$disk_sf{’1S’},2S:$disk_sf{’2S’}

When and only when the 2pt analysis is finished we can safely remove all the quark field files,

86 Run

clean: 2pt_analysis
canrm $disk_qf{’d’} $disk_qf{’1S’} $disk_qf{’2S’}

Once we have cleaned the disk all the jobs for this configuration are complete and the runfile

will move onto the next configuration.

Concept Index 87

Concept Index

S
Sample index entry . 11

88 Run

i

Table of Contents

1 Introduction . 1

2 A simple Runfile . 3

2.1 The simple Runfile . 3

2.2 Invoking run . 3

2.3 The simple runfile in detail . 4

2.4 Output from run . 5

2.5 Errors and Restarts . 7

3 Dealing with Tapes . 11

3.1 Tape Maps . 11

3.2 Making a map file for existing tapes . 12

3.3 Making a map file for new tapes . 13

3.4 Tape inits . 16

4 New tape commands . 19

4.1 canrm . 20

4.2 canls . 21

4.3 map . 22

4.4 newconfigs . 23

4.5 newinits . 24

4.6 newtapemap . 25

4.7 tapeinit . 26

4.8 tapemap . 27

5 New canopy commands . 29

5.1 archive field file . 30

5.2 archive gauge field . 31

5.3 archive quark field . 32

5.4 get field file . 33

5.5 get gauge field . 34

5.6 get quark field . 35

5.7 make 2pt . 36

5.8 make quark . 38

5.9 invert method . 39

5.10 check quark . 40

5.11 diff quark. 41

ii Run

5.12 make source . 42

5.13 make wf . 43

6 New unix utilities . 45

6.1 tardir . 46

6.2 watch . 47

6.3 dt . 48

6.4 rprof . 49

6.5 hms . 50

6.6 logdate . 51

6.7 stream . 52

6.8 fixuphistory . 53

7 Run . 55

7.1 Stopping everything in an emergency . 55

7.1.1 Allowing existing jobs to continue running 55

7.1.2 Killing all the jobs currently running. 56

7.2 Restarting after a system crash . 57

8 Runfile . 59

8.1 Makefile Section . 59

8.1.1 Exiting . 59

8.2 Tips and Tricks . 60

8.2.1 STREAMS . 61

8.2.2 READ AHEAD . 61

8.3 Useful lines to include in the perl header . 61

8.3.1 Checking for correct userids . 61

9 User hooks and Variables . 63

9.1 Variables . 63

9.2 Hooks . 64

10 Libraries . 67

10.1 B lattice defaults . 68

10.2 C lattice defaults . 69

10.3 D lattice defaults . 70

10.4 Control hooks . 71

10.5 Email hooks . 73

10.6 Signal hooks . 75

10.7 Standard log directory hooks . 76

10.8 Standard read ahead . 77

iii

10.9 Standard limit hooks . 78

10.10 Standard hooks . 79

11 An example runfile . 81

Concept Index . 87

iv Run

