Virtual Data Language Reference Manual
Document Version: 0.5
21
Introduction

32
Namespaces

33
Lexical structure

33.1
Comments

33.2
Identifiers

33.3
Keywords

43.4
Literals

43.4.1
Integer literals

43.4.2
Float literals

43.4.3
Boolean literals

43.4.4
Date literals

43.4.5
String literals

53.4.6
XML literals

53.4.7
URI literals

53.5
Operators and Separators

54
Type Definitions

54.1
Primitive types

54.2
Composite types

54.2.1
Arrays

54.2.2
Structs

55
Datasets

66
Mapping

67
Variables

67.1
Global variables

77.2
Local variables

77.3
Dataset-bound variable

77.4
Scopes

77.5
Variable references

78
Procedure Definitions

88.1
Atomic procedure body

88.1.1
Application procedure body

88.1.2
Service procedure body

98.2
Compound procedure body

99
Expressions

99.1
Primary Expressions

109.2
Operators

109.2.1
Assignment Operators

109.2.2
Relational Operators

109.3
Boolean Expressions

1010
Statements

1010.1
Namespace Statement

1110.2
Include Statements

1110.3
Type Definitions

1110.3.1
Type Specifiers

1110.3.2
Struct Declarations

1210.4
Declaration Statements

1210.4.1
Local Variable Declaration

1210.4.2
Dataset Declaration

1310.5
Expression Statements

1310.6
Selection Statements

1310.6.1
The if statement

1310.6.2
The switch statement

1310.7
Loop statements

1310.7.1
The foreach statement

1310.7.2
The while statement

1410.7.3
The repeat statement

1410.8
The break statement

1410.9
The continue statement

1411
Examples

1411.1
QuarkNet Detector example:

1511.2
fMRI reorient example

1611.3
fMRI AIRSN Example

1711.4
fMRI FEAT Example

1712
Extensions to consider

1 Introduction

VDL is a language for workflow specification in Data Grid environments, in which:

· Data lives in files, in a variety of different file system organizations and file formats;

· We want to be able to define and compose typed procedures that operate on such data; and

· We want to be able to execute these procedures on distributed resources.

VDL addresses the challenges associated with such environments by defining:

1. a language for describing operations on typed data items; and

2. mechanisms for binding data items defined in this language to datasets stored on persistent storage.

The binding between data item and dataset is based on the XDTM (XML dataset typing and mapping) model [ref], which separates the declaration of the logical structure of datasets from their physical representation. The logical structure is specified via a subset of XML Schema, where a physical representation is defined by a mapping descriptor, which describes how each element in the dataset’s VDL representation can be mapped to a corresponding physical structure such as a directory, file, or database table.
This manual documents the XDTM-based VDL, which uses a C-like syntax to represent XML Schema types and procedures. This C-like syntax is easier to read and write than XML, but can easily be mapped to XML.
2 Namespaces

Since VDL is to be used in Grid environments, the type definitions and procedure definitions can be shared across multiple virtual organizations, groups, and project development stages. Thus namespaces issue is important to address.
In general, every type definition and procedure definition has an associated namespace. When they are referenced from within another namespace, they must be referenced with their namespace specified explicitly, so as to avoid any confliction with types and procedures defined in the origin namespace.

If the namespace for a definition is not specified, it uses
‘http://www.griphyn.org/vds/2006/05/nonamespace’
as the default namespace. We follow the XML prefix:localname convention and use ‘:’ as the separator between the namespace and the local name of a definition.
A namespace prefix can be defined to represent an XML-style namespace (in the form of a URI or URN), following the XML namespace convention.

3 Lexical structure

Lexical tokens follow the conventions of the C programming language. Specifically, there are five different tokens: identifiers, keywords, literals, operators, and other separators. White space (spaces, tabs, newlines) and comments are used to separate tokens and are ignored.

3.1 Comments

The characters # or // starts a comment, which terminates when a newline is encountered.
3.2 Identifiers

An identifier starts with an alphabetic character (‘a’-‘z’, ‘A’-‘Z’, ‘_’), after which there can be arbitrary number of letters or digits. Identifiers are case sensitive, meaning upper case letters are different from lower case ones. An identifier is used to represent the name of a variable, a procedure, a procedure argument, etc, which we’ll talk in detail in later sections.

	identifier
	::=
	(letter|‘_’) (letter | digit | ‘_’)*

	letter
	::=
	lowercase | uppercase

	lowercase
	::=
	‘a’ .. ‘z’

	uppercase
	::=
	‘A’ .. ‘Z’

	digit
	::=
	‘0’ .. ‘9’

3.3 Keywords

Keywords are identifiers that are reserved for system use, and may not be used otherwise. We have reserved the following identifiers for type declarations and control statements:

int
float
string

date
boolean
uri

any

true
false
null

namespace
include
type
if
else

switch
case
default

while

foreach
in
step

repeat
until
3.4 Literals
VDL literals are constant values that are represented as strings in the program. The types and formats of literals are draw from the set of atomic values defined by XML Schema. The type of a literal value is implicit from its context – from the type of the variable that its being assigned to or the type of the procedure parameter that it is being passed to, or the type of value that is expected in a specific position of a statement such as a an if, while, or switch.

Some literal types can be identified without being enclosed in quotes; string literals and similar types based on strings must be enclosed in quotes.

3.4.1 Integer literals

An integer literal is a sequence of digits. (We may need to support octal and hexal integer literals too.)

	integer literal
	::=
	nonzerodigit digit* | ‘0’

	nonzerodigit
	::=
	‘1’ .. ‘9’

3.4.2 Float literals

A float literal has an integer part, a decimal point, a faction part, an e, and an optionally signed integer exponent. The integer part and the faction part both consist of a sequence of digits, where either (but not both) may be missing. The e together with the exponent may be missing too.

Every float literal is considered to be double-precision.

	float literal
	::=
	pointfloat | exponentfloat

	pointfloat
	::=
	[intpart] fraction | intpart "."

	exponentfloat
	::=
	(intpart | pointfloat) exponent

	intpart
	::=
	digit+

	fraction
	::=
	"." digit+

	exponent
	::=
	("e" | "E") ["+" | "-"] digit+

Examples of float literals are:

3.
.14
3.14
3.14e-6
2e100

3.4.3 Boolean literals

There are two boolean literals: true and false.
3.4.4 Date literals

A date literal is represented in quoted string conforming to ISO-8601 standard, for example: “2005-09-25T11:30:00Z”

3.4.5 String literals

A string literal is a sequence of characters surrounded by two double quotes. The special string literal null is used to represent an uninitialized string.
3.4.6 XML literals

XML literals refers to verbatim XML documents. We use @ followed by a string representation of the XML document to denote such literals. For instance:

@“<volume><header>b1.hdr</header></volume>”

3.4.7 URI literals

An URI literal is a string that conforms to the URI specification – IETF RFC 2396. (http://www.ietf.org/rfc/rfc2396.txt).

Example:

“http://www.griphyn.org/”

3.5 Operators and Separators

Operators are used in expressions for operations that involve one or more operands. Separators are for grouping and separation. The operators and separators are as follows:

operators
[] () . =

== != >= <=

separators
{ } , : ;

4 Type Definitions
All data objects processed by VDL are typed. We distinguish between primitive types and composite types.
4.1 Primitive types

A primitive type is one of int, float, boolean, date, string, uri.
4.2 Composite types

A composite type is a type composed of primitive types. We support two kinds of type constructions: Arrays and Structs. We talk more about these in the declaration section.

4.2.1 Arrays

An array is a data structure that contains zero or more elements that are all of the same type; this type is called the element type of the array.

Arrays are indexed by integer values, and they are 0-indexed following the C convention.
Currently only one-dimensional arrays are supported.

4.2.2 Structs

A struct is a data structure that can contain members of different types, where those types can be either primitive or composite types.

5 Datasets

VDL provides a logical programming model for data Grids. A VDL program consists of procedure calls that operate on data items. VDL provides the level of abstraction such that operations can be specified on a data item without regard to its physical location or representation. Within the VDL logical space, a data item is called a data object, and its physical counterpart is called a dataset.
A dataset is a data item that has persistent physical storage. Datasets have both logical representations and physical representations. A dataset’s logical structure is declared using VDL type definition, where its physical representation describes how the dataset is physically stored and cataloged on persistent storage.

A VDL program specifies the operations on a dataset’s logical structure. The physical dataset is accessed via a mapper, which translates between the physical, persistent structure of the dataset and its logical representation.

A physical dataset is referenced via a dataset handle, which contains name, type, and mapping information. The name of the dataset handle uniquely identifies the dataset; the type information specifies the logical type the dataset conforms to; and the mapping information comprises the name of a mapping descriptor and the necessary parameters to the mapper. A dataset handle builds the connection between a data object and its corresponding physical dataset.
The declaration of a dataset handle is defined in Section 10.4.2.
6 Mapping
The process of mapping, as defined by XDTM, converts between a dataset’s physical representation (typically in persistent storage) and a logical XML view of that data. VDL programs operate on this logical view, and mapping functions implement the actions used to convert back and forth between the logical view and the physical representation.

Associated with each logical type is a mapping descriptor, which describes the implementation of the mapping functions and necessary mapping parameters to the implementation.

A mapping descriptor contains the following fields:

name

- name of the descriptor

description

- a brief description of the mapper

type

- name of the abstract type of the dataset to map

implementation_class
- java class that implements the mapping API

parameters

- parameters for the implementation class

The implementation of the mapper must conform to the mapper API, which is a standard interface defined between mappers and data sources.
7 Variables

A variable represents a storage location. Each variable has a name and an associated type that determines what values can be stored in the variable. The value of a variable is the value currently stored in the storage location allocated to the variable. The value of a variable can be initialized or changed through assignment.

A variable consists of a name and a value. A value is either a literal, or a reference to a data item.
7.1 Global variables

Global variables are the variables declared in the main body of a VDL program. A global variable extends to any procedures and blocks defined in the program and can be referenced anywhere within the program once it is declared.
7.2 Local variables

A local variable occurs in a block. A block is a section of code, which consists of one or more statements that can be grouped together. Blocks can be nested with one block inside another.

A local variable can be declared, for instance, within the body of a compound procedure, or in a while or switch statement.
A local variable may also be declared within a foreach statement as an iteration variable.

7.3 Dataset-bound variable

When a variable is associated with a dataset, i.e. it holds the dataset handle of that dataset; it is also called a dataset-bound variable.
7.4 Scopes

A scope defines the visibility of a variable. A global variable extends to any procedures and blocks defined in the program. For a local variable, if it is defined in a block, its scope is limited to that block. If it is defined at the beginning of a procedure, its scope extends to any blocks contained within the procedure, unless a contained block defines a variable with the same name.
7.5 Variable references

A variable reference
is an expression that refers to a variable. It denotes a storage location that can be accessed, either to get the current value, or to store a new value. In C, it is also denoted as l-value.
A simple example of a variable reference is an identifier
. For an array variable, subscript can be used to reference an array element. For instance if a is an int array, then a[2] is a variable reference that refers to element 3 in the array. For a struct variable, member names can be used to refer to member variables in the struct. For instance, if addr is a struct, with string members: street, city, and state, then addr.city refers to its city member variable.
8 Procedure Definitions

Datasets are operated on by procedures, which take one or more typed data items as input, perform computations on those data item(s), and produce zero or more data items as output.

A VDL procedure can be either an atomic procedure or a compound procedure. An atomic procedure definition specifies an interface to an executable program or service. A compound procedure composes calls to atomic procedures, other compound procedures, and/or control statements: it can be viewed as a named workflow template defining a graph of multiple nodes.
A procedure definition has the form
	procedure-definition
	::=
	procedure-declarator procedure-body

A procedure declarator declares the output formal parameters, the name, and the input parameters of the procedure being defined. This construct is used for all procedures, regardless of the form of their body declarations.

	procedure-declarator
	::=
	‘(’ output-parameter-list ‘)’ procedure-name ‘(’ input-parameter-list ’)’

	parameter-list
	::=
	parameter (‘,’ parameter) *

	parameter
	::=
	type identifier

Both output-parameter-list and input-parameter-list can be optional. When there is zero or one output parameter, the parentheses for output-parameter-list can be omitted.
The procedure-body is different for atomic procedure and compound procedure:
	procedure-body
	::=
	atomic-procedure-body | compound-procedure-body

8.1 Atomic procedure body
An atomic procedure defines an interface to an external executable program or Web Service, and specifies how data items passed as input and output parameters are mapped to and from application program or service arguments and results. While the header of an atomic procedure specifies the name of the procedure, and the inputs and outputs to the procedure, the body of such an atomic procedure specifies how to set up its execution environment and how to assemble the call to the procedure. Thus, it is in the body of an atomic procedure that mapping operations may appear to access components of any physical dataset that is dataset-bound to data items passed as procedure parameters.
	atomic-procedure-body
	::=
	procedure-type ‘{’ invocation-config ’}’

	procedure-type
	::=
	“app” | “service”

The body can specify the invocation of either an application or a Web Service, where procedure-type specifies the type of the procedure.
8.1.1 Application procedure body
An application procedure defines the interface to an application program that should be invoked, typically by a POSIX exec() primitive.
A program procedure body maps the VDL arguments to the information needed to ultimately invoke an application through the POSIX interface, which involves setting arguments and environment variables, and passing back a return code (via an exit value).

Provisions for handling file descriptors (stdin, stdout, stderr) are provided in the body.
(TODO: environmet variable and other configuration handling, probably using Profile)

In addition, we define the mapping from logical types to physical representations, via mapping functions.
	invocation-config
	::=
	application-name application-argument* ‘;’

	application-argument
	::=
	mapping-expression | stdio-argument

	mapping-expression
	::=
	mapping-function-call |
expression

	mapping-function-call
	::=
	‘@’function-name ‘(’ expression ‘)’

	stdio-argument
	::=
	“stdin” ‘ =’ mapping-expression |
“stdout” ‘=’ mapping-expression |
“stderr” ‘=’ mapping-expression

8.1.2 Service procedure body
A Web Service body specifies the URL of the WSDL description, the port type and operation to invoke, and soap message mappings.

	invocation-config
	::=
	wsdlURI port-type operation soap-message-mapping*

	wsdlURI
	::=
	“wsdlURI” ‘=’ string-literal ‘;’

	Port-type
	::=
	“portType” ‘=’ string-literal ‘;’

	Operation
	::=
	“operation” ‘=’ string-literal ‘;’

	soap-message-mapping
	::=
	message-element-name ‘=’
(‘{’ message-part-mapping* ‘}’) | mapping-expression ‘;’

	message-part-mapping
	::=
	message-part-name ‘=’ mapping-expression ‘;’

(TODO: WSRF service specification)

8.2 Compound procedure body
A compound procedure body is a block of one or more VDL statements, which are executed in an order determined by their data dependencies.
The body is comprised of procedure-statement-sequence, which is just a sequence of statements:

	compound-procedure-body
	::=
	‘{’ procedure-statement-sequence ‘}’

	procedure-statement-sequence
	::=
	statement*

9 Expressions

An expression consists of operands and operators that follow a certain sequence.

9.1 Primary Expressions

There are several kinds of primary expressions:

Literals
A literal is a value that has an associated type. We have already discussed literals in Section 3.4.
Variables

A variable also needs to have an associated type. Variables have been described in section 5.

Member accesses
A member access expression is an expression that accesses a member of a struct variable. It is a variable expression followed by a dot, and then followed by the name of a struct member. It has the type of the named member of the struct.
	member-expression
	::=
	primary ‘.’ identifier

Element accesses []
An element access expression is an expression that accesses an element of an array. It is a primary expression followed by square brackets, containing a subscript expression. It has the type of the element type. It is also called subscription.
	element-expression
	::=
	primary ‘[’ expression ‘]’

Procedure calls ()
A procedure call expression is an invocation of a procedure. It is in the form of parenthesized list of comma separated expressions, for actual output parameters; followed by a primary expression, for function name; and then followed by parenthesized list of comma separated expressions, for actual input parameters. Output parameters should have associated types explicitly defined. The acutal paramters can be optional. When there is only one output parameter specified, the parentheses can be optional.
	procedure-call
	::=
	‘(’ output-param-list ‘)’ primary ‘(’ input-param-list ‘)’

	output-param-list
	::=
	typed-parameter*

	typed-parameter
	::=
	type identifier

	input-param-list
	::=
	positional-parameters (‘,’ keyword-parameters)?

	positional-parameters
	::=
	expression (‘,’ expression)*

	keyword-parameters
	::=
	keyword-item (‘,’ keyword-item)*

	keyword-item
	::=
	identifier ‘=’ expression

Parenthesized Expressions
A parenthesized expression is a primary expression enclosed in parentheses. The presence of parentheses does not affect its type, or value. Parentheses are used solely for grouping, to achieve a specific order of evaluation.
	parenthesized_expression
	::=
	‘(’ expression ‘)’

9.2 Operators
Operators in an expression indicate what kind of operations to apply to the operands. Currently we only support assignment operator and relational operators. Maybe later we can add support for built-in operators such as arithmatic operators, and dataset-specific operators.
9.2.1 Assignment Operators

The assignment operator = assigns the value of the right operand to a left operand. The left operand must be a variable reference.

9.2.2 Relational Operators
The relational operators ==, !=, <, >, <= and >= are comparison operators, and the result of the comparisons evaluates to either true or false. For instance, x==y evaluates to true is x is equal to y, and false otherwise.
9.3 Boolean Expressions
A boolean expression is an expression that evaluates to either true or false.
The controlling conditional expression of an if-statement, while-statement, or repeat-statement is a boolean expression.

10 Statements

10.1 Namespace Statement
The namespace statement MUST appear at the very beginning of a VDL program, and the namespace must be unique. It serves similar purpose as a Java package definition, so that the type definitions and procedure definitions defined in this namespace would not collide with others defined outside. The syntax for namespace definition is as follows:

“namespace” (prefix)?
 ‘“’ uri ‘”’ (‘;’)?
prefix is the abbreviation of the namespace denoted by uri. If prefix is ommitted, then the namespace is regarded as the default namespace. If a default namespace is not defined in the program, it assumes the value

“http://www.griphyn.org/vds/2006/05/nonamespace”

Some examples:

namespace
“http://www.griphyn.org/”

namespace
fmri
“http://www.fmridc.org/”
For the definitions that follow the namespace statement, they all belong to the default namespace unless otherwise specified.
10.2 Include Statements

An include statement is used to include type definitions defined in an external XML Schema document, or to include another program defined in VDL, so that the type definitions and procedure definitions can be used directly within the current VDL program.

An include statement is of the form:

“include” ‘“’ include-file-name ‘”’
Since the definitions in the included file may have a different namespace from the one in the current program, it is necessary to explicitly specify the namespace for those definitions when they are used in the current program.
10.3 Type Definitions

A type definition is usually used at the beginning of a program, to define the structure of a new type, which can later be used to declare a variable. Type definitions have the form:

	type-definition
	::=
	“type” type-name type-specifier ‘;’

Where the type-name is a unique identifier and the type-specifier is either an already defined type, such as primitive types, or a struct declaration.

10.3.1 Type Specifiers

The type specifiers are

“int”

“float”

“string”

“boolean”

“date”

“uri”

struct-declaration

10.3.2 Struct Declarations

A struct declaration is of the form:
	struct-declaration
	::=
	‘{’ type-declaration-list ‘}’

 The type-declaration-list is a sequence of type declarations for the members of the struct.

	type-declaration-list
	::=
	type-declaration*

A type declaration is of the form:

	type-declaration
	::=
	type-specifier declarator-list ‘;’

The declarator-list is a comma-separated sequence of declarators. Each declarator can be an identifier, or an array declarator, which is an identifer followed by [], with an optional array size designated by an integer literal.

	declarator-list
	::=
	identifier |
identifier ‘[’ integer_literal? ‘]’

For example, an order with an order number, a description, and a sequence of item numbers can be specified as follows:

type order {

int
orderNumber;

string
description;

int
itemNumber[];

}

10.4 Declaration Statements

A declaration statement declares a variable, or a physical dataset in the form of a dataset handle.
10.4.1 Local Variable Declaration

A local variable declaration declares one or more local variables.

	local-variable-declaration
	::=
	type local-variable-declarator-list ‘;’

	local-variable-declarator-list
	::=
	local-variable-declarator (‘,’ local-variable-declarator)*

	local-variable-declarator
	::=
	identifier (‘=’ local-variable-initializer)?

	local-variable-initializer
	::=
	expression | array-initializer

	array-initializer
	::=
	‘[’ expression (‘,’ expression)* ‘]’

Some examples:

int
x, y=2;

String
s = “hello”;

float
f[] = [1.0, 2.0, 3.0];

10.4.2 Dataset Declaration

A physical dataset is referenced by a dataset handle, which contains name, type and mapping information of the dataset.
	dataset-declaration
	::=
	Type dataset-name ‘<’ mapping-description ‘>’ ‘;’

	dataset-name
	::=
	Identifier

	mapping-descrition
	::=
	mapping-descriptor (‘:’ mapping-parameter-list)?

	mapping-descriptor
	::=
	Identifier

	mapping-parameter-list
	::=
	mapping-parameter (‘,’ mapping-parameter)*

	mapping-parameter
	::=
	identifier ‘=’ expression

A sample dataset declaration is shown as follows:

Image
img1<image_mapper: location=“/home/archive/images/image1.jpg”>;
As a dataset handle is no more than a variable holding a dataset, we can also call it a dataset-bound variable.
10.5 Expression Statements

Most statements are expression statements, they take the form:

expression ‘;’
Usually expression statements are assignments, or procedure calls.
10.6 Selection Statements

A selection statement selects one of a number of possible statements for execution, based on the value of a boolean expression.

	selection-statement
	::=
	if-statement | switch-statement

10.6.1 The if statement

The if statement selects a statement for execution based on the value of a boolean expression.

	if-statement
	::=
	“if” ‘(’ boolean-expression ‘)’ ‘{’ statement* ‘}’
(“else” ‘{’ statement* ‘}’)?

10.6.2 The switch statement
The switch statement selects one of many statement lists for execution based on the value of the switch expression.

	switch-statement
	::=
	“switch” ‘(’ expression ’)’ switch-block

	switch-block
	::=
	‘{’ switch-section* ‘}’

	switch-section
	::=
	switch-label statement*

	switch-label
	::=
	 “case” constant-expression ‘:’ | (“default” ‘:’)

10.7 Loop statements
A loop statement repeatedly executes some statements in the loop body. It can be of one of the following statements:

	loop-statement
	::=
	foreach-statement | while-statement | repeat-statement

10.7.1 The foreach statement

The foreach statement iterates over the elements of a collection, and executes the embedded statement for each of the elements.
	foreach-statement
	::=
	“foreach” type? identifier (‘,’ index-identifier)?
 “in” expression “step” int-literal ‘{’ statement* ‘}’

The type and identifier of a foreach statement declare the iteration variable of the statement. if the identifier is defined before the foreach statement, then type is optional. The type of the expression in the foreach statement must be a collection type. The step controls how far off the iteration jumps forward to another element, and the index variable is an integer variable to track the current position of the iteration.
10.7.2 The while statement
The while statement executes an embedded statement zero or more times conditionally based on a boolean expression.

	while-statement
	::=
	“while” ‘(’ boolean-expression ‘)’
‘{’ embedded-statement ‘}’

	embedded-statement
	::=
	statement*

A while statement is executed as follows:

· First the boolean-expression is evaluated.

· If it is evaluated to true, control is transferred to the embedded statement. When control reaches the end point of the embedded statement, control goes back to the beginning of the while statement.

· If the boolean expression yields false, control is transferred to the end point of the while statement.

10.7.3 The repeat statement
The repeat statement executes an embedded statement zero or more times conditionally based on a boolean expression.

	repeat-statement
	::=
	“repeat” ‘{’ embedded-statement ‘}’
 “until” ‘(’ boolean-expression ‘)’ ‘;’

The repeat statement is slightly different from the while statement in that control goes to the embedded statement first, and the boolean expression is evaluated, if true, then control goes to the end point of the repeat statement, otherwise, control goes back to the embedded statement.

10.8 The break statement

The statement

“break” ‘;’
causes termination of the smallest enclosing loop, or switch statement; control passes to the statement following the terminated statement.

10.9 The continue statement

The statement

“continue” ‘;’
causes control to pass to the loop continuation portion of the smallest enclosing loop statement; that is to the end of the loop.

11 Examples
11.1 QuarkNet Detector example:

This example shows the reconstruction of events from a cosmic ray detector. The type definition for a detector consists of a set of observations and some basic information such as serial number, firmware revision about the detector. An observation consists of raw data from the instrument along with metadata about the time period of the recording and the physical location and orientation of the detector (geometry). A Pulse is an example of an output dataset added to the observation following the application of a reconstruction procedure to the raw events. The physical formats for raw data, geometry and pulse are binary files.
// type definitions

type Detector {

DetectorInfo info;

Observation ob[];

}

type Observation {

Date ostart, oend;

RawData rawdata;

Geometry geo;

Pulse pulse; /* a derived file: pulses reconstructed from raw */
}

type DetectorInfo {

Int serialNum;

Date installDate;

Sring swRev;

}

// atomic procedure definition

(Pulse pulse) reconstruct (Raw raw, Geometry geo) {
 app {

 reconstruct
 @filename(raw)

 @filename(geo)

 @filename(pulse);

}
}

// dataset definitions

RawData
raw1<file_mapper:location=“/quarknet/group1/detector1/observation1/rawdata”>;
Geometry
geo<file_mapper:location=“/quarknet/group1/detector1/observation1/geometry”>;
Pulse
p1<file_mapper:location=“/quarknet/group1/detector1/processed/pulse/p1”>;

// procedure call

p1 = reconstruct (raw1, geo);
11.2 fMRI reorient example

In this complete example, we show some basic analysis of fMRI data. A Volume contains a 3D image of a volumetric slice of a brain image, represented by an Image (voxels) and a Header (scanner metadata). A time series of volumes taken from a functional scan of one subject, doing one task, forms a Run. The program reorient allows the rotation of an image 90 degrees or 180 degrees around the x-, y-, or z- axis and also makes it possible to flip the data (effectively converting it to its mirror image) along any of these axes. The compound procedure reorientRun applies the reorient process to a whole Run, which effectively rotates each Volume in that Run along a specific axis. The workflow consists of two steps: firstly the input dataset bold is reoriented along the x axis, and then the output rbold is reoriented again along the y axis to get the final output rrbold. Physically each run is stored as a series of image and header files in a directory, and the filenames have the same prefix.
I’m concerned that the sequencing here is not clear. Would it be be better to introduce parallel operators?
In your calls to reorientRun, you have a return argument that is also dataset-bound. Is that legal? It will seem odd to people, I suspect. Need to make clear what is going on.
You need to explain what is happening in the procedure “reorient” in terms of argument passing and mapping.
// type definitions

type Image {}

type Header {}

type Volume { Image img; Header hdr; }

type Run { Volume v[]; }

// atomic procedure

(Volume ov) reorient (Volume iv, string direction) {

 app {

 reorient @filename(iv.hdr) @filename(ov.hdr) direction;

 }

}

// compound procedure with foreach statement

(Run or) reorientRun (Run ir, string direction) {

 foreach Volume vol, i in ir {

or.v[i] = reorient(vol, direction);

 }

}

// Declare input and output parameters, and bind them to physical datasets.
Run bold<run_mapper: location=“/fmri/study1/subject1/”, prefix=“bold”>;

Run rbold<run_mapper: location=“/fmri/study1/subject1/”, prefix=“rbold”>;

Run rrbold<run_mapper: location=“/fmri/study1/subject1/”, prefix=“rrbold”>;

// Invoke two procedures
rbold = reorientRun(bold, “x”); // reorient bold along x axis to get rbold
rrbold = reorientRun(rbold, “y”); // reorient rbold along y axis
11.3 fMRI AIRSN Example
This example shows how a complex workflow – the functional analysis of a Run, can be composed in a concise programming style. The detailed specifications of the other procedures are omitted. Parallelism is implied if there are no data dependencies between two procedures.
type Image {};

type Header {};

type Volume { Image img; Header hdr; }

type Run { Volume v[]; }

type Anat Volume;

type Subject { Anat anat; Run run []; Run snrun []; }

type Group { Subject s[]; }

type Study { Group g[]; }

type Air {};

type AirVector { Air a[]; }

type Warp {};

type NormAnat {Anat aVol; Warp aWarp; Volume nHires;}

airsn_subject ()

{ // Main function on “Subject”

 Subject s, Volume atlas, Air ashrink, Air fshrink) {

 NormAnat a = anatomical(s.anat, atlas, ashrink);

 Run r, snr;

 foreach r , i in s.run {

 snr = functional (r, a, fshrink);

 s.snrun[i] = snr;

 }

}

(Run snr) functional(Run r, NormAnat a, Air shrink) {

 Run yroRun = reorientRun(r , "y");

 Run roRun = reorientRun(yroRun , "x");

 Volume std = roRun[0];

 Run rndr = random_select(roRun, .1); //10% sample

 AirVector rndAirVec =

 align_linearRun(rndr, std, 12, 1000, 1000, [81,3,3]);

 Run reslicedRndr = resliceRun(rndr,rndAirVec,"o","k");

 Volume meanRand = softmean(reslicedRndr, "y", null);

 Air mnQAAir =

 alignlinear(a.nHires, meanRand,6,1000,4, [81,3,3]);

 Volume mnQA = reslice(meanRand, mnQAAir, "o","k");

 Warp boldNormWarp =

 combinewarp(shrink, a.aWarp, mnQAAir);

 Run nr = reslice_warp_run(boldNormWarp, roRun);

 Volume meanAll = strictmean (nr, "y", null)

 Volume boldMask = binarize(meanAll, "y");

 snr = gsmoothRun(nr, boldMask, 6, 6, 6);

}
11.4 fMRI FEAT Example
This example shows an fMRI Expert Analysis Tool (FEAT) workflow, which consists of calls to programs in the FEAT package.
#

Simple FEAT Datat Analysis

#

(Volume Results) feat (Run v, DesignMatrix d, FeatInput f) {

 # Our standard volume

 Volume Standard<volume_mapper: loc="/dbic/lib/Atlases/T1Atlas">;

 Matrix Design<design_mapper: file="/dbic/home/jed/design.mat">;

 # Create a volume from a run

 Volume AnalyzeBrick = avwmerge(v,"t");

 # Extract ROI

 Volume ExampleROI = avwroi(AnalyzeBrick,"49","1");

 # Register

 Volume PreFiltFunc = mcflirt(AnalyzeBrick,

 "prefiltered_func_data_mcf","4");

 # Skull Strip

 Volume PreFiltFuncBet = betfunc(PreFiltFunc);

 # Filter

 (Volume FiltFuncBet, Volume Mask) = ip(PreFiltFuncBet,"1000","18","-1");

 # Process design matrix

 (Volume SmoothFunc, Volume Zstat1) = film_gls(FiltFuncBet,

 Design,"5","1000");

 # Align/register

 (Volume ROI2Standard, Matrix ExampleFunc2Standard) =

 flirt(Standard,ExampleROI);

 # Mask Zstat

 Volume ThreshZstat = avwmaths(Zstat1,Mask);

 # Cluster

 (Volume ClusterMaskZstat, Volume Cope) = cluster(ThreshZstat,

 ExampleFunc2Standard, Standard, ExampleFunc2Standard);

}
12 Extensions to consider

- More atomic types, such as those defined in XML Schema

- Type inference: if the type of a formal parameter to a procedure can be inferred from its definition, then the type does not need to appear in the procedure signature.

For example, if you write

(c) myfunction (a,b)

{

 tmp=combineImages(a,b)

 c=invertImage(tmp)

}

as long as you have function prototypes for combineImages and invertImage,

you can infer from the program the types for the variables a,b and c and

hence the prototype for myfunction... and so on for the entire program.
- Literal XML snippets instead of quoted XML to avoid quoting problem.

- Blocks within a procedure, with new scopes for declaring variables

- Ability to invoke an XPath to extract a value from a document
�What is the difference between a variable and avariable reference?

�What is that?

PAGE
2

