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Abstract

We have recently presented evidence that in configurations dominating the regularized
pure-glue QCD path integral, topological charge associated with overlap Dirac oper-
ator organizes into long-range low-dimensional space-time structure. This opened an
exciting possibility of studying the QCD vacuum structure directly in typical configu-
rations contributing to the regularized QCD path integral. Here we propose to initiate
a systematic study which will help to clarify the quantitative (and some qualitative)
details of this structure (such as space-time dimensions of its parts) and will help to
clarify the physical role of the associated geometric properties. In particular, we pro-
pose to calculate the full overlap-based topological charge density on configurations
sufficiently close to the continuum limit (a ≈ 0.05 fm). This is an important step to-
ward obtaining a definitive picture of topological charge fluctuations in QCD vacuum.
The total amount of requested resources is 280,000 processor hours on the FNAL’s 128
node single-processor cluster and the proposal should be considered of type (B).

1



1 Physics Goals of the Calculation

The underlying goal of the proposed calculation is to determine the role of topological charge
fluctuations in the physics of strong interactions. It has long been believed that resolving
this issue represents an important component in ultimately solving the mystery of the QCD
vacuum. However, it is only recently that the exciting developments in lattice field theory
offered convincing reasons to believe that an important progress is within the reach. First,
the developments in understanding lattice chiral symmetry provided us with the best-founded
topological charge density operators [1, 2]. An operator from this class posesses completely
continuum-like field-theoretic properties [3], and represents a full-fledged topological field
(with associated charge strictly stable) on the lattice [1]. Secondly, it was found that there
is an obvious excess of space-time order in distributions of topological charge when such
operators are used [4]. (See also Ref. [5].) This is the first time that an observation of
space-time structure directly in thermalized configurations of regularized QCD ensembles
has been achieved. The conceptual value of this development is that it demonstrates that
the direct lattice approach to studying the QCD vacuum structure is possible (and feasible).
The aim of the current proposal and request for SciDAC resources is to pursue this avenue
of research.

1.1 Geometry and Physics

Direct approach to the QCD vacuum (i.e. one that does not rely on any proposed idealized
picture of the QCD vacuum), while truly promising, is in its infancy. Consequently, the as-
sociated goals and the nature of the research must be viewed in the appropriate context. At
the current stage of development the emphasis must be put on identifying the prominent pat-
terns of the space-time structure. In other words, the emphasis is naturally on the geometry.
Once the defining geometric features are identified and quantified, their role in determining
the physics of the QCD vacuum should be studied. In Ref. [4] the first steps toward describ-
ing the geometry of space-time arrangement in topological field have been achieved. It was
found that the charge is organized into the sign-coherent locally low-dimensional “sheets”.
The sheets are geometrically global (see also [6]), spreading over maximal available distances,
and fill the macroscopic fraction of the space-time. This sheet structure is built around the
supporting substructure – the “skeleton”, with analogous geometric properties. Needless to
say, there are many geometrical details to be discovered and specified in this overall picture.

When it comes to physics, then one can argue that the first attempts to identify the con-
nections to geometry should concentrate on the charge-charge correlator C(x) ≡ 〈q(0)q(x)〉.
Indeed, this correlator encodes the topological susceptibility (related to the UA(1) problem
via Witten-Veneziano relation) and the mass spectrum of pseudoscalar glueballs. One can
thus ask in detail how the space-time structure in topological charge distributions results in
the particular properties of this correlator. Note that C(x) has not been itself calculated
for overlap-based topological charge density, and so this is actually part of the proposed
calculation.
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1.2 Examples of Specific Goals

While the proposed calculations have to be treated as exploratory we give below the questions
that we hope to answer with the computer resources made available for this project.

(1) Calculate both local and global dimensions involved in the structure. While
it has been demonstrated that the local dimension of the structure is less than four [4]
(both in case of sheets and of the skeleton), the calculation of exact dimensions using
scaling analysis has not been performed yet. This will be done both for the sheets and
the skeleton. Also, it is possible that more than one definite dimension is involved for
different parts of the structure. We hope to shed light on this question as well.

(2) The physical relevance of sheet versus skeleton. With the data obtained in
this calculation it will be possible to determine whether it is the skeleton structure
or the sheet structure that is relevant for determining the shape of the charge-charge
correlator, and hence responsible for important physical properties of QCD vacuum.

(3) The calculation and properties of C(x). As mentioned above, this correlator is
crucial for this project and is intimately associated with the structure to be studied. As
first pointed out in Ref. [7], C(x) is negative at arbitrary non-zero distances and this
served as an important guide for identifying the relevance of low-dimensional structure.
We wish to learn in detail how the interplay of positive core and the negative part at
non-zero physical distances (both diverging) result in a finite topological susceptibility.
It will be possible to determine precisely the nature of the divergence at short distances
which is highly interesting theoretically.

(4) Geometric relation between positive/negative sheets (parts of skeleton).
There is a rich geometric information encoded in the space-time relation between pos-
itive and negative part of the structure. While it is known that these have to follow
closely one another [4] the exact nature of the relation has not been explored yet in
detail. Uncovering the precise form of this relation will add important new information
on topological charge fluctuations in the QCD vacuum and hopefully will lead to an
understanding of how the global charge in the configuration comes about.

(5) Relation between the structure at low energy and the fundamental struc-
ture. Using the topological density based on GW fermions, one can naturally define an
effective topological field describing topological fluctuations at low energy [8]. One can
thus ask about the relation between the fundamental structure (involving all fluctua-
tions up to the scale of the cutoff) and the structure at low energy. The scale-dependent
picture of QCD vacuum is the new conceptual ingredient that our recent direct studies
invoked. The proposed calculation will make it possible to develop this picture in much
finer detail.
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ensemble a [fm] V #configs #eigenmodes #full densities

E1 0.165 84 50 100 30
E2 0.110 124 50 100 15
E3 0.082 164 50 100 5
E4 0.055 244 50 100 0

Table 1: Ensembles of Iwasaki gauge configurations with the associated number of overlap
eigenmodes per configuration that will be available for the construction of effective topolog-
ical densities. The number of configurations with full densities currently available is given
in the right column.

2 The computational strategy

2.1 Context of the proposed calculation – existing data

As discussion above indicates, our inquiry into the nature of topological fluctuations in
QCD involves two computationally separate but physically intertwined lines which need to
be developed simultaneously. The first is the computation of effective densities for several
ensembles with sufficiently large physical volume. This involves the calculation of large
number of eigenmodes for the overlap Dirac operator [9]. This part of the project has been
almost completed, and the most extensive part of the calculation is currently proceeding using
SciDAC resources at FNAL. We work with quenched Iwasaki ensembles at fixed physical
volume Vp = 3 fm4 and four different lattice spacings. Upon completion, we will have the
pool of eigenmodes summarized in Table 1. These will allow the study of effective topological
densities up to the cutoff Λ = 1 GeV across the range of lattice spacings considered.

The second line of computation within this project involves calculation of full (funda-
mental) densities on the identical (sub)ensembles. This part of the project has also already
begun using other resources of the Kentucky group and the current status of this calcula-
tion is summarized in the right column of Table 1. Note that in this second part it is not
feasible (nor necessary) to calculate the overlap densities for full ensembles. (We will come
back to the question of sufficiency later in this proposal.) Indeed, our plan is to eventually
generate full densities for 50, 50, 12, 7 configurations from ensembles E1, . . . , E4 respectively
by the end of next year. The current proposal involves the calculation of full densities for 7
configurations of the ensemble E4, which is computationally the most intensive part of this
project.

2.2 Other details

To calculate the topological density on configurations from the above ensembles we will use
the overlap Dirac operator [9] with negative mass ρ = 1.368 (κ = 0.19) in the Zolotarev
implementation. The density is given by qx = 1

2ρ
Trγ5Dx,x. Since the overlap operator is

implicitly defined, the required matrix elements have to be computed via acting with D on
point sources, i.e.
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Figure 1: C(x) correlators at three different lattice spacings.

Dµa,νb
x,y = (ηµa

x )+ D ηνb
y (1)

where ηµa
x is unity at space-spin-color index (x, µ, a) and zero elsewhere. As it stands this

is an O(V 2) calculation. This complexity is offset to some degree by the fact that good
locality properties of the overlap-Dirac operator allow for several space-distributed sources
to be computed simultaneously. Our tests show that on 244 lattice it is possible to use
the superposition of 16 sources separated by Euclidean distance at least 12. Using our
implementation of the overlap operator (with violation of chiral symmetry around 10−10 as
measured by the residual mass), the use of multiple sources will introduce the local relative
error in qx better than 10−5.

2.3 The need and sufficiency

The calculation we are proposing is non-standard and we would like to clarify certain points
in this regard.
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The need. While the computation of full densities on 244 lattice is computationally
quite intensive, it is crucial to carry it out since all of the physics goals listed in Sec. 1.2
depend on it to some degree. This is most apparent for goals (1) and (3). Indeed, in case of
dimensions we need in most general case to carry out 3-parameter fits to the form c1 + c2a

d

in lattice-spacing dependence. We thus need at least four different lattice spacings for such
analysis. Moreover, our first experience with the data indicates that the physical input at
lattice spacing around a ≈ 0.05 fm is necessary to carry out the continuum extrapolation
reliably. Similarly, in case of goal (3), we are finding that it is necessary to calculate the
correlator at such lattice spacing in order to capture the diverging short-distance behavior
of the correlator.

The sufficiency. The proposed calculation involves just 7 configurations on 244 lattice
which might invoke the impression that it cannot possibly serve our physics purposes. In
fact, this is not the case. First of all, what we have found so far is that at the fundamental
level (i.e. for full densities), the behavior of the structure is very stable from configuration
to configuration. This is another signature of the order present. (Seeing one configuration
essentially means seeing them all.) At the quantitative level, we have emphasized that at the
current stage the physics focus is on the correlator C(x). In Fig. 1 we show the correlators
constructed from the available data quoted in Table 1. Even though the calculation for
ensemble E3 only involves 5 configurations, the quality of the correlator is far better than
from 30 configurations for E1. This is both the result of the fact that an all-to-all correlator
from a single configuration closer to the continuum limit samples the behavior with more
“statistics” and the fact that the space-time structure simply becomes more robust and
universal closer to the continuum limit.

3 Software

The software used for the proposed calculation has already been developed by the χQCD
collaboration (mainly Andrei Alexandru) and used in the calculations carried out so far (see
Table 1). The package is written in C and is based on publicly available MILC code. This
code has been tested thoroughly for the current purpose and has comparable efficiency to
the existing version of the CHROMA code in the critical part of the calculation i.e. for
overlap operator–vector operation. The tests performed in the context of overlap propagator
calculation on JLab clusters indicate that our code runs less than 20% slower than the highly
optimized CHROMA code in the setting that will be used in the calculation. We believe
that this difference does not justify an extensive effort (and manpower needed) to make the
transition to QCD API software at the current stage of the project.

4 Time estimate and requested resources

We have made a direct estimate of the time needed on the FNAL’s 128 node (single processor)
cluster, where we expect the proposed calculation to be carried out. This is also where our
current eigenmode calculation for ensemble E4 is currently being performed. The results of
small test runs show that 40,000 processor-hours per configuration are needed to carry out
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the full density calculation on 244 lattice. Our total requested time is thus 280,000 processor-
hours on the FNAL’s 128 node, single-processor cluster (1.5 months of the cluster use). The
alternative would be the same amount of processor-hours on the JLab’s 256 node cluster.

5 Availability of the data

Given its nature, the results of the proposed calculation will be mainly useful to the part
of the community interested in studying the QCD vacuum structure. The data produced as
the result of this calculation will be made available to the SciDAC LGT collaboration after
the period for the requested allocation ends.

6 Exclusive rights

We would prefer to have an exclusive right for calculations and investigations listed in Sec. 1.2
for 9 months after the period for the requested allocation ends.
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