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Exact supersymmetry on the lattice I

The lattice action is not unique. Improve the action in order to approach the
continuum limit faster and/or have less symmetry breaking.

Improving lattice supersymmetry seems to be a difficult task for gauge theories
because on the lattice the gauge field and the fermions are treated in a very
different way.

It is possible to obtain perfect supersymmetry respect to the supersymmetric
transformations. Some examples:

Golterman & Petcher, Nucl.Phys.B319:307-341,1989

Bietenholz, Mod.Phys.Lett.A14:51-62,1999

Catterall & Karamov, Phys.Rev.D65:094501,2002,
Phys.Rev.D68:014503,2003

Fujikawa & Ishibashi, Phys.Lett.B528:295-300,2002

Fujikawa, Nucl.Phys.B636:80-98,2002

Beccaria, Campostrini & A. F., Phys.Rev.D69:095010,2004 and
hep-lat/0405016 (Phys.Rev.D. to appear)

Bonini & A. F., hep-lat/0402034, D'adda et al., hep-lat/0406029
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Four dimensional lattice Wess-Zumino model with GW fermions I

Our starting point is the paper by Fujikawa (2002)

We show that it is actually possible to formulate the theory in such a way
that the full action is invariant under a lattice superymmetry transformation
at fixed lattice spacing.

The action and the transformation are written in terms of the Ginsparg-Wilson
operator and reduce to their continuum expression in the limit a — 0.

The lattice supersymmetry transformation is non-linear in the scalar fields
and depends on the parameters m and g entering in the superpotential.

We also show that the lattice supersymmetry transformation close the algebra,
a necessary ingredient to guarantee the request of supersymmetry.
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The Ginsparg-Wilson relation
vsD + Dvys = aD~vysD

implies a continuum symmetry of the fermion action which may be regarded
as a lattice form of the chiral symmetry (Lischer 1998).

The fermion lagrangian with a Yukawa interaction
L =Dy + gp(PrdpPr + P-¢'P )y,
where
1 . 1 -
Py = >(1+1), Py =Z(1£%s)

are the lattice chiral projection operators and 45 = v5(1 — aD), is invariant
under the lattice chiral transformation

5770 — i€;7\/5’¢ ’ 5’95 — ’I:’QZ’75€, 5¢ — _27’€¢ .
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By writing ¢ in terms of two Majorana fermions

v =x+1n,
it can be seen that the interaction term couples the two Majorana fermions

and therefore there is a conflict between lattice chiral symmetry and the
Majorana condition (Fujikawa 2002).

This is due to the fact that the projection operators P. depend on D. By
making the following field redefinition

a — —
¢/=(1—§D)¢a ¢’=¢a
the Yukawa interaction becomes

g¥'(P1¢Py + P_¢'P_)¢’
and the two Majorana components of ' decouple.

Taking advantage of this property, one can define the four dimensional Wess-
Zumino on the lattice with Majorana fermions.
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We start with a lagrangian defined in terms of the Ginsparg-Wilson fermions
on the d = 4 euclidean lattice. A simple solution vas given by Neuberger
(1998)

1 X
D==-(1- ) X=1-aDy,
a XX
where
1 * a *
Dy = _'YM(VM + Vi) — _vuvu
2 2
and

Vid(@) = (#(e +ai) —6(),  Vip(e) = (8(z) — $(z — ai)

Exact LSUSY 6



Fermilab, USA Lattice 2004

It is convenient to write
D = D1+ D>
where

1+ 9ViVs 1 Vi+V,

D, = : Dy = —v,———=~v,D5p,.
XTx ) p pl2p

1
a

(1
In terms of D1 and D> the Ginsparg-Wilson relation becomes

2
D%-Dgngl.
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The action of the 4-dimensional Wess-Zumino model on the lattice

1_ a _ 2 a _ 1 _
Swz = Y {5%(1 = 5D1) " Dax — ~¢'D1g + F'(1 = SD1)7'F + Jmitx

+m(F¢ + (Fp)") + gx(PydPy + P_¢p P_)x + g(Fo* + (Fo)N)},

where ¢ and F' are scalar fields and x is a Majorana fermion which satisfies
the Majorana condition

X=x'C
and C'is the charge conjugation matrix which satisfies

ct =-cC, cct=1.

Moreover, our conventions are

CyC™t = —(w)"
CysC~t = (5)" .
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In the continuum limit reduces to the continuum Wess-Zumino action
1
5 = / (X0 + m)x + 910%9 + FIF +m(Fo + (F9)')
+9x(PrpPy + P-¢'P)x + g(F¢* + (Fp*)1) } .
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The supersymmetric transformation I

If one defines the real components by

1 , 1 :
¢—>E(A+7,B), F—)E(F—ZG)

the WZ model Swz = So + Sin

1_ a _ 1
So = Z {Ex(l — EDl) 'Dox — E(ADlA + BD1B)

xr

1 a 1 a
“F(1—-—=D))'Fr+ G601 - =D 1@
+2 ( 5 1) -|—2 ( > 1) },

S =3 {Gmix +m(PA+GB) + —Z54%(A + 15 B)x
+ %g[F(A2 ~ B%) +2G(AB)]} .
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So (free part) is invariant under the lattice supersymmetry transformation

0A = &x = xe

0B = —i&ysX = —iX7Vs€

Ox = —D2(A —ivsB)e — (F — ivsG)e
O0F =Dy

0G = ?:gDQ’)/5X .

In fact, the variation of Sp under the this transformation is
0So =
_ a _ . . 2 _
=D {X(1 = 5D1) 7 Da[ = Da(A — insB)e — (F — iysG)e] — ~xeD1 A

o
+ ZZX’YseD1B + (€D2x)(1 — ng)_lF + i(ED2ysx) (1 — %Dl)_lG}-
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and integrating by part *, this variation becomes
— a —1 2 2 .= a -1n12 2
> {-xel(1- SD1)TIDS 4+ =D1]A +ixyse[(1 = SD1) T D3 + D1 B
xr

- a _ . — a _ L a .
—x(1 — 51)1) 1Do(F — ivs Qe + xDoe(1 — 51)1) LF + ixDoyse(1 — 51)1) ey
=0,

where we used the Ginsparg-Wilson relation, which implies

a 2
(1-=D1)'D3=-=D;.
2 a

*For instance, for any scalar function F one has FeDox = xDaFe.
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Failure of the Leibniz rule I

The variation of S;,; under the susy transformation does not vanish because
of the failure of the Leibniz rule at finite lattice spacing (Fujikawa 2002 and
Dondi and Nicolai 1977)

(e + g+ a) — f@)g(@) =
= (e +a) ~ F@)g(@) + @) 9+ ) — g(=)

o (f@ +a) = (2) (9(x + a) — ()
= (V@)g(@) + f@)(Vo()) + a(VF () (Vg(=))

breaking of supersymmetry is of order O(a).
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e In order to discuss the symmetry properties of the lattice Wess-Zumino
model one possibility is to modify the action by adding irrelevant terms
which make invariant the full action.

e Alternatively, one can modify the supersymmetry transformation in such
a way that the action has an exact symmetry for a # 0.

Since the transformation leaves invariant the free part of the action, this
modification must vanish for g = 0.

A = exy = xe

0B = —igysx = —iX7Ys€

5X — —DQ(A — i’Y5B)€ — (F — i’75G)€ -|— gRs
OF = D>y

0G = 1€D2y5X

e R to be determined by requiring that the variation of the action vanishes.

— We assume that R depends on the scalar and auxiliary fields and their
derivatives and not on y.
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The variation of the Wess-Zumino action under the transformation is
_ a _ _ . )
0Swz = Z {gx(1 — EDl) 1DoRe — mx[D2(A — ivsB)e + (F — ivsG)e — gRe]

+m(AeD2x + Fxe 4+ iBeDaysx — iGxvyse) + %i(gx + vs(Evsx))x

—V2gX(A + ivs B)[D2(A — iysB)e + (F — ivsG)e — gRe]

+%[(A2 _ B2)zDoy + 2F Axe + 2iF Bxvse
+2iABEDavsx + 2GBie — 2iGA(Ryse)]} .

By using the Fierz identity, terms with four fermions cancel as in the contin-
uum.

Moreover, g independent terms cancel out after an integration by part, and
one is left with

§Sw, = zx: {gx[(1 — ng)_ngR + mR]e — %[QQ(A + ivsB)D2(A — iysB)e

— xD2(A — ivs B)?%e] + V2¢*°X(A + ivs B) Re} .
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The function R is determined by imposing the vanishing of Sy 7.
By expanding R in powers of g

R=R®M 4+ ¢gr® 4 ...
and imposing the symmetry condition order by order in perturbation theory,
we find
RM = ((1 - %Dl)_ng +m) AL

with

1
AL = —2(2(A + iv5sB)D2(A — iys B) — D2(A — ivs B)?)
1
— E{Q(ADQA — BD>B) — D>(A? — B?)

+ 2ivs5[(AD2B + BD2A) — D2(AB)]}.

Exact LSUSY
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To order ¢g? one has
R® = —v2((1 - %Dl)_lDQ +m)~ (A + ivsB)((1 — %Dl)_lDQ +m) AL,
and forn > 2
R = —v/2((1 = 5D1) "' Da +m) (A + irsB)R" D,

The formal solution is
a .
[(1— 51)1)—1132 +m 4+ V29(A+ivsB)]R = AL.

e R— 0 for a— 0, since AL vanishes in this limit.

e AL is different from zero because of the breaking of the Leibniz rule for
a finite lattice spacing.
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The algebra I

By the commutator of two supersymmetries one find a transformation which
is still a symmetry of the Wess-Zumino action, i.e. the transformations of
the fields form a closed algebra, order by order in g.

Up to order ¢!, (the rest can be generalized!)

Two supersymmetry transformations on the scalar field A give

0100A = 81(E2x)
—&2[D2(A — ivsB)er + (F — ivsG)er — gReq]

and their commutator vyields
[52, 51]A = —2§1D2€2A -|- g(€_1R€2 — §2R81) .

The order g' of the second term on the r.h.s. reads

g(Z1RWes — 5 RMey) =

m(l —2D
V292 d-3 1)2 [D2(A? — B?) — 2(AD>A — BD>B)]e1
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Finally, the commutator of two supersymmetries on the scalar field A is

[62,61]A = —2&1vue2{ D2, A
m(1l —2D,)
+ - :

2 2y o
VoA~ 2D 1 2D, [P2(A” = B?) = 2(AD2,A - BDw. B}

Similarly, the commutators of two supersymmetries on the other fields, up to
terms of order ¢!, are

[52,51]3 = —251’7u€2{D2uB
m(1 —3D1)
" \/Eng(l —£D1) + 2Dy
[52,51]F = _2517M52{D2uF
g D3
V2m2(1 — 5D1) + %Dl
[52, 51]G — —251’yu€2{D2uG

V2 D5
—_ 29
m2(1 — 2D1) + 2Dy

[DQN(AB) - (ADQMB + BDQ,LLA)]}a

[D2,(A? — B?) — 2(AD2yA — BD2,B)1},

[D2M(AB) - (ADQMB + BD2MA)]}
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and

[02,01]x = —2&1vue2{D2ux
g m(l—-3D1)— D>

~ V2m2(1 - 5D1) + 2D,

(DQ(A — i’YBB)’YuX + (A+ 7:'75B)D2'7HX

— D2 [(A — i’YSB)’YuX])} -

Therefore, the general expression of these commutators is
[51752]¢:Q‘MP;?(¢)7 CD:(A,B,F,G,X),

where at = —2&>y# e and Py (®P) are polynomials in & defined as

P,jb((b) = D7, ® 4+ O(g)

We have verified that the closure works, i.e. the action is invariant under the
transformation (up to terms of order gl).

P — & + o' P (D)
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Notice that, in the continuum limit D>, — 9, and the transformation reduces
to

® = & + a9, P
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Conclusions and Outlook I

e The Wess-Zumino model is an interesting model to understand how to
put GW fermions with exact lattice supersymmetry.

e Study of the Ward-Takahashi identities.
e numerical simulations of this model (at leat in two dimensions)

e The forward step would be to apply to N =1 SYM (more tricky!)
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