Formulation of chiral gauge theories

Werner Kerler, HU Berlin

Starting from basic structure of
Narayanan, Neuberger 1993, 1994, 1995
and Luscher 1999, 2000

recently generalization W.K. 2003

In view of Ginsparg-Wilson (GW) Dirac
operator D = p(1 — V) with V-1 =Vt

in W.K. 2003 more generally D = F(V)
and chiral projections P_(V) and Py (V)

Here formulation without reference to V

to reveal truly relevant features,
restrictions on spectra of D removed,
much more general structure of P_ and ]5+

Also condition on basis transformations
refined and related properties of
equivalence classes of bases worked out

Topics:

Dirac operators, spectral representations
structure of chiral projections

forms of correlation functions
equivalence classes of bases
transformation properties

variations, perturbation theory



e For [D',D] =0 and D' = y5D~s we have
the spectral representation

D =YX+ P+ Y P+ AP
j k

with Im X; = 0 and Im X > 0 and where
vsPE = P¥ys = £PF and ysPl = Pilys

e Since Tr(qsl) = Tr(75P,£) = Tr(75P,§I) =0
we get for Nji = TerjE

+ —\ —
> (N =N =0
J
With Xo = 0 the index is I = N — N

e In contrast to the formulations with V

— not restricted to one real eigenvalue
in addition to zero

— for complex ones now different moduli
for the same phase possible

— on the other hand, realizations relying on V
no longer applicable, other ones to be used



To get particular realizations we require
1(D+ D") = DD' F(DD', (D + D))

where F' is a nonsingular function
which is local for local D

In W.K. 2002 and Fujikawa et. al 2002 special
cases depending on DD' only and with monotony,
thus only one real eigenvalue in addition to zero

Example F = Y2 ¢, (DD')” of W.K. 2002 can
readily be extended to case here with up to 2M+1
further real eigenvalues

Evaluation possible by extension of method of chi-
rally improved fermions by Gattringer et. al 2001
(with systematic expansion of Dirac operator)

Mapping of GW equation to system of coupled
equations there can as well be done in case of
more general relation here



e For chiral projections P_ and ]3+ required

P.D = DP_
e Implies [P_,DD'] = [Py, DD'] = 0 for

DDt =N "32(PF + P + Y (Rl + P
j k

so that P- and Py decompose as
O 3 D DU . S e
J k J k
PX and PX in subspace of P + P
PR and PR in subspace of Pl 4 pPlI

e Condition PyD = DP- and spectral representa-
tion of D used to determine these projections

e Expressing PR and PR by P! and Pl we get

PR=c,Pl+ (1 - ¢)PI

—er(1 — Ck)%(ew’“P/g + e—ka,y)
PR =Pl 4 (1 - ¢)PI

+ver(1 — a)ys (e_i@PIE + ei@’“P;};I)

0<¢ <1, elletar2m) = 1, el = )\ /|0
with the relations

TrPR=TrPR=TrPl=TrPl =: N,
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e For j # 0 we obtain P = P so that for
N = Tr Py, N = TrP_
we have N — N = Tr Py — Tr P{. Thus choice
Pl =Py, P =Py
which leads to N — N =1

_ . + —
e For I =0 it follows that } .. N." =) ..o N;
so that to get Tr1 =: 2d for

N+N=Nf+N, +2> TrP‘+2> K,

j#0 k
we must put
X _ p+ X _ p—
P =P or P =P

e For general I we then have

N=d N=d-I or N=d+1I, N=d

e For the dimensions in the_decompositions of the
chiral projections P_ and Py we thus obtain

N =N+ L, N=Nj+1L
L=y N+ YN
j#0 k



e Chiral projections may also be expressed by

1 _ 1 _
P_ = 5(1 — 15G), Py = 5(1 + Gs)

e G and G are unitary and ys-Hermitian with
G=P +P ¥ (PF+P)+ Z (PP + e PB)
J7#0
G=P +P £y (PF+P; )+Z (€% B + % BB)
j70
related to the quantities introduced before by

PA = (h2PL 4 02PN — ibphyys (PL = P /(2 + b2)
PB = (12P! + h2P + ibphyns (P — PIY) /(B2 + 52)

hi = a; Sin gOk+Sin ¢k:, b = 1—2¢p, ap = 2\/Ck(1 — Ck)

COS ¢, = aj, COS Yy, Sin ¢, = \/1 — ai cos? py,

for G and by analogous relations for G

e Beause of the opposite signs of the j-sums
(which to allow for a non-vanishing index
must not vanish) obvious that generally G # G

e SpecialcasesG=1,G#1land G=1,G#1



General relation
D+ GDIG=0

Choosing ¢, = % in chiral projections

G and G commute with D

In case ¢, = % for the mentioned realization of D
V =1-2DF(DD' (D + D"))
and GG =V

In GW case introduced by P. Hasenfratz 2002
G=(1-91+sV)/N, G=(s1+41—-95)V)/N

with A = \/1 —2s(1 —5)(1 = 3(V + V1)) and real

parameter s #% 2, for which GG =V,
also realization for more general operators here

Special choice G=V, G=1

in Narayanan, Neuberger 1993, 1994, 1995
and Luscher 1999, 2000 with V of GW case,
in particular V of Neuberger 1998



e Non-vanishing fermionic correlation functions are
<¢U +1 . waﬁb& +1 ¢&N>

Z 2 : Tal OF 01...0ND&101 “ o Dagr

0'1 O' 014...,0

with the alternatlng multilinear forms

N
rY\O'l...O'N I E E’él,...,ijvuglil L uO'NiN

’Lll,...,ZlNzl

N
V5.5 = E €jprojnUaijs - - - UFgix
jl;---j]\_/:]-
where the bases uz; and u,; Ssatisfy

P_ = uuT, ulu = 1w, Py = ﬂﬁ*, 'u =1

e Note that averages of | T,,..,|? and | T5,..5,|? equal
to one for any N and N since

% Z |T01...0N|2:% Z |T51 0'N|2_1

O14...,0N 0'1, ,O'N

e While P_ and Py invariant under unitary basis

transformations v = S, a(®) = 4§, )
Yo..0n and T3 . 5. multiplied by dety S and dety S,
therefore condition

detyS - detz ST = 1

(constant equal to one in order that invariance
also for general linear combinations of functions)
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e Total set of pairs of bases because of condition
detywS - detg ST =1

decomposes into equivalence classes
of which one is to be chosen

— Without condition all bases
related to one of the chiral projections
connected by unitary transformations

— With condition total set of pairs of bases
u and uw decomposes into inequivalent subsets
which constitute equivalence classes

— Transformations which respect condition
do not connect beyond equivalence class

e Different equivalence classes are related by
pairs of basis transformations for which

detwS - detgST =¢e®©, © #0

The phase factor €© describes how the results
of the respective formulations of the theory differ

e Considerations simplify by noting that S
with det S = e can be expressed by product
of irrelevant unimodular matrix Se~®/N
and matrix e®?/N1



e Properties of chiral projections imply
(1) corresponding decomposition of bases
(2) relations between uw and u

— From the general relation
= |\s| 2DPR D'

putting P} = fv’“lul[k] T we get

it = e71| x| "t Dul?

with phases ©; so that PR = S/, al[k]g[kﬁ

i i

WUl Ul
— For Pt = Yo Ul Ul = 2 gl
where j # 0 we have with phases @i

—l:t[]] - —’L@ ‘)\ ‘ lDui[J]

e Because of N— N; =N - N} =1L
so far diagonal L x L submatrix M; of afDu
in which eigenvalues

"4 Xkl "S5
have multiplicities N, and NJ.“—L respectively
e Zero-mode part described by

_ N7
0 = D=1 um}r and Py = =1 WY
with bases satisfying Du; = 0 and Du; =0
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e With this we find for the correlation functions
<,¢O'r+1 . wano +1 $5N>f —
1Oy ol 5%[ 1
D €l D €FnIE iy Yo, - Gola,

/ / _/ put)

10N Ori1590

—i©; 107 ~t —
e uO'L+1 L+1 uO'NN e uL_l_l T4l . UNO'N det ML

g

where G = P_D—lﬁJr, with D, P_, ]3+ operators
D, P_, Py restricted to the subspace on which
1 — P}t — Py projects,

det M; = H(ez@i‘)\ I)N H(ez@kp\ )Nk
j70

and phases @j and ©; related to zero modes

e Note that basis dependence of det M, in subspace
and that additional one by u; and ﬂ}L of zero modes

e Equivalence class of bases characterized by value

Z N.O, + Z NFfeof+oef —o;
J70
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e Conditions for equivalence class uS, uS
P.=uwu', ulu=1w, PL=au', du=1g

detyS - dety ST = 1

e Gauge transformations P/ = TP_T1, PL. = TP, T!
for G # 1, G # 1 with [T,P_] # 0, [TP+] #= 0
generally imply for transformed equivalence class

u'S" = TuSST, 'S = TuSSt

with «/, @', S’, S’ satisfying transformed conditions
and unitary S = S(7,U) and St = S(7,U)
for which detwS(1,U)(detzgS(1,U))" =1 and

detw(S(Ta, U)S(To, TUT)) (detw(8(Ta, U (To, TUT)))
= detwS(To T, THhTLUTI T)) (detaS(To T, THTUTIT))

e Insertion gives for correlation functions

(W, -y D5y - PN = € Y>> Too

015.--,0R 017 7UR

,,,’Z-J;%UR<¢01.--¢JR'QZ51-°'¢5'R>f 5’15',1°'.7—5:'-R5J

R

where e’7 = dety Sy - dety S} with ¥; = 0

e Factor detwS7 - detWST = eWr for Y97 # 0O just
form met for transformat|ons to inequivalent bases:

This part of transformation separated off
by requiring 97 = 0
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e In special case G # 1, G = 1 because of P;L =Py
no change of equivalence class part uS

e Then, however, because of [7,Py] = 0 possible
to rewrite

and to calculate
dets Sl = exp(3Tr B)

where 7 = exp(B) (and TrB=4i>  , b’ trgT")

n,t-n

e T hen factor in correlation functions

e’r = detw St - exp(3Tr B)

where now detySs+ form of transformation
to inequivalent bases:

Separating off this part one here remains
with 97 = —i exp(TrB)
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e CP transformations of Dirac operator
DU = wWDTUOW', W = POt
with Py, = 6%., USP = U;- and USF = U*

n'n’ k,ii—k
for k =1,2,3, where n = (—7i,n4), and C charge
conjugation matrix

e Implies for P_ and ]5+ the relations
PEP(UP) = WPL W', PEPUT) = WPT )W

which give for the index [P = —J

e Untransformed and transformed forms

P =5(1-sGW)), Pt = S(A+GU)s)
P_CP(Z/[CP) — %(1—’)/56(2/{03)), P_EP(Z/{CP) — %(1+G(UCP)’Y5)

obviously differ by interchange of G and G,
thus because generally G = G
not symmetric situation of continuum
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With basic conditions satisfie_d by u, u, S, S
as well as by «<P, g¢P, §CP gGCP

where S; and S, unitary operators

Then for correlation functions

CP CP_7.CP TCP\CP _ 19
(S SPPER L gST) P = YT Y oWl

014y...90R O1,...,O0R

WL (o, Voo B Wi - Weran

where eer = detgS; - detWS“g

Repetition of transformation must lead back,
therefore choice of S and S, restricted such that

Ycp = —ilIn(detwsS; - detWS’E ) same value

Factor detwsS; - detwgz = e again form
met for transformations to inequivalent bases
and this part separated off for $cp = O
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We define gauge-field variations by

do(U(t))
dt t=0

left _ right
. U(t) = et u,e B

dp(U) =
where Uy)wn = Und?, ., and (B Vwn = B/nds .

In special case of gauge transformations then

BLeft — Bﬂght — B

Varying logarithm of condition dety.S - detzST =1
Tra(S16S) — Trw(S16S) =0
which with «( = Su and 4(5) = 5% becomes

Tr(6au™DN —Tr(uDu®™N) = Tr(saah) —Tr(uuh)

Solely using the basic conditions
P.=uu', ulu=1u, P.=uu', du=1g

many variational relations (weaker conditions),
for example

Tr(P_[61P-,02P.]) =
51 Tr(Sruu') — 6o Tr(d1u u) + Tr(dp2,1u u)

i left right
holding for general generators Bﬂ(l), Bu(l) and

left right left left right soright
B2y Buzy and [Ba), Binl B2y Bud)]
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e Effective action only in absence of zero modes
of D and thus also only for I = 0, then

—5Setf = Tr(P_-D7 YD) + Tr(suu') — Tr(6ua')

e For gauge transformations with 7(t) = e'8

— 580 = [B, O]
from OU(t)) = T(t) OWU(0)) TH(t)

— % = Bu+ u Sk 8¢S,
from u(t) = 7 (t)u(0)Sx(t) for [T,P_-] #0

so that
Tr(P_-D716¢D) = Tr(BPy) — Tr(BP.)

Tr(6%uu) = Tr(BP.) 4+ Trw (S 6%Sx)
e For [T,P_]#0, [T,Ps+] # 0 then

8¢ Ser = Trw(Sh 66S7) — Tra(Sh 6657) = i 6%01

since SX — SS’]’S/T, §X _: §_§T§/T
and Trw(S78S) — Trg(ST65) =0

e For [T,P_]# 0, [T, P4] =0 where
equivalence class uS, ucS with 6. =0

1
5¢ Sefr = ETr('y5B) + Trw(S1 6%S7) = i 6%97

e No contribution by §¢S7 and 65+ due to
(1) separation of mentioned transformation
(2) independent confirmation in the following

17



e Lischer 1999, 2000 defined current j,, by

Tr(duul) = —i Yy trg(munjun)
m,n
and required it to transform gauge-covariantly

o We get explicitly  nu, = BLe,‘;erﬂ — UMnBLL%htUin
t a’UJJj

ij = ’L(U,meun + anU/in)a Pun,a/oc = § :U’joaU
) un,oc!
J,0

e Requirement j;, = ePwij,e P+ because of
U, = eP+U,,e B implies that one must have

/ —_ Bn _Bn i
p,un =€ plune !

which with v = 7uSx leads to the condition

S (sl 2o~
7,k

& aU,un,aa’

from which with S7! = SI it follows that

¢S =0

confirming previous dealing with S+ and Sr
from different point of view

e For[T,P_]# 0, [T,P4+] =0 then in contrast
to Lischer ¢ Se = 2Tr(vsB)
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e For perturbation expansion we get for M = @fDu
with M = My + M

detgu M = (1 +y zg) detaw Mo,

(=1
Y4 f—r+1 {—r+1
)£+T tpl tpr
I S
— =1 p=1 P1 Pr
t, = Tr((DgtM)F), M = T Myuf

t, fermion loops, Dgl free propagators, M vertices

e Vertices in more detail
M = PoD1P_o+iiot, Durul+ioul DP-o~+ PioDuyuf

— Inserting term P+ODIP o in limit P+o and P_g
can be replaced by 2(1 4 ~s) and 2(1 — ~s)

— Other terms rely on limit of u; and ;.
Since only contributions from zero and corners
of the Brillouin zone survive, related chiral pro-
jections get independent of gauge field. Thus
constant bases in limit and u; — 0 and u; — O

e Since only ]5+0D1P_o contributes in limit
correct vertex function at tree-graph order.
With appropriate Dirac operator also in general.
Thus usual formulation obtained in limit
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