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Motivations

Choose a “convenient” gauge action

® to reduce discretization errors

® to improve chiral properties
— suppression of dislocations

in view if the next unquenched simulations

Several approaches already investigated:

® Symanzik (Luscher-Weisz)

® Renormalization Group (lwasaki, DBW2, Perfect Actions)
In this work: AD HOC approach

SU(N) lattice plaquette gauge action: [Gonzales-Arroyo, Korthals Altes

(1982)]
§=3 B> |1- 75ReTr.Up]
o P

— sum over irreducible representations o of SU(N)
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Tr, U =Tr;UTr ;U — 1
Fundamental + adjoint action:

S = 5f Z [1 — %ReTrfUp] ‘|’5a Z [1 — ﬁTrfU};TrfUp
P

P

Phase diagram:

line of first order phase transition with
endpoint located in

(B¢, Ba) = (4.00(7),2.06(8))

[Blum et al (1996)]

At the endpoint: amg++ — 0

[Heller (1996)]

Responsable for large lattice artefacts
inm0++for5.5<5f<6.0

0 2 4 6 for the Wilson (fundamental) action?
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Proposal:

Fundamental + adjoint action with 5, < 0
can improve the scaling behavior?

B, = —2.0, —4.0 fixed

® Finite temperature phase transition: evaluation of 3¢ . for
1/(aT,) =2,3,4,6

® Static quark potential: computation of the string tension (at T' = 0)
with variance reduction algorithms

® Glueball masses
0T is expected to be the most sensitive quantity

Adjoint plaquettes with negative couplings:
[Gupta et al (1991)]
[Morningstar & Peardon (1999)]
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Finite temperature phase transition

Critical temperature:

TLC — Nta({ﬂfa Ba}c)

Determination of 3, . for 5, = 0, -2, —4 fixed

Method: study the probability distribution of Q = & > - Pz

Pz =Trs | [, Uz 0 Polyakov loop
Ny Bq 0.0 —2.0 —4.0
2 5.0048(6) | 6.4475(6) | 7.8477(6)
3 5.5420(3) | 7.1603(3) | 8.8357(4)
4 5.6926(2) | 7.4433(3) | 9.2552(6)
6 i 7.8056(5) | 9.7748(11)
For 8, = 0: consistent
Ni | B ref. with fhe literature
2 [5.0033(7) | [Alvesetal (1992)] | (3, . computed from the
3| - — peak in the susceptibility)
4 | 5.6927(4) [Alves et al (1992)] Ny =6,8,=0":
4 | 5.69254(24) | [lwasakietal (1992)] | B¢ = 5.89405(51)
4 | 5.6925(2) [Beinlich et al (1999)] | [lwasaki et al (1992)] s




Lines of constant physics

Naive continuum limit:

S = Bw = By + 28, — equivalent Wilson coupling

95

: _ Ba
At one loop : Bw = Bf + 28, — 55f+25a
Constant Sy — lines of constant physics
L e
|/aT = 6 | Deconfinement transition line for 1/(aT.) = 6
(@ ~ 0.11 fm):

Numerical results compared with one-loop
prediC’[ion with BW = 6f,c|a:O.11 fm, B,=0-

By

Results for 5, > 0 included [Blum et al, 1995]

i — Perturbative predictions fail in describing
— the lines of constant physics for 5, < 0

Ba
Quadratic interpolation: 8 = co + c184 + c2f32
satisfactory for a = 0.11 fm, 0.17 fm, 0.33 fm
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The static potential

extracted from Polyakov loop correlation function
aV(r) = —x; In(P(2)"P(y)) + €

Computed at B¢, 8, =0,—-2,—4,atT =0 (aN; >> 1/T,)

Variant of Luscher-Weisz method for error reduction [Lischer, Weisz
(2001)]

Factorization in temporal + spatial directions:
temporal direction divided in layers of thickness NV, +
lattice divided in blocks 5> x

Polyakov loop correlation function:
Nl
(P(x)*P(y)) =
T {. {T(z,y,0)T(Z,¥,a)..T(Z,y,aNt — a) }) o, 00,,~
Nl
' X y qwcfagat)aﬁ57 ——lfo,t,O)ZBl](g;t,O)57
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| ... |sup,¢ : @verage under fixed boundaries between temporal layers

!
[ ]sub,t — [P(fa t)z,ﬂp(ga t)’y,6]sub,t

!
[P(fa t)z,ﬁ P(ga t)’y,5 }sub,t

. average under fixed boundaries of the spatial blocks
P(Z,t) :segments of Polyakov loops

Advantage:

factorization in the spatial directions

Disadvantages:

less copies of the correlator, more parameters to be tuned
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Ansatz:

V(r)=or+u—

b = 0.04 fm [Liischer, Weisz (2002)]

Example: 8¢ = 5.6926, 8, = 0:

T
127

String tension

(1+2) +0 (%)

2

2

r/a | a®Onaive | G°0p—0 a’0p—o,r1 | a’0p—0.04fm,r7 | Stat. error
3 0.2211 | 0.1793 0.1707 0.1600 0.0003
4 0.1902 | 0.1688 0.1664 0.1629 0.0004
) 0.1783 | 0.1654 0.1645 0.1630 0.0004
6 0.1727 | 0.1640 0.1637 0.1629 0.0006
/ 0.1692 | 0.1630 0.1628 0.1623 0.0006
8 0.1667 | 0.1621 0.1620 0.1617 0.0011
9 0.1655 | 0.1618 0.1618 0.1616 0.0025

rr. tree level improved definition of the force

Systematic errors under control
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0.68

Scaling of T../+\/o

LRI L N
J[ ) gzg 1. For 3, = —2, —4 the estimate is
0.66 ;ﬁ % pe B closer to the continuum limit than
064 L E for 8, = 0 (Wilson action) |
>b . ﬂ%} § } . but no significant improvement is
~ 062 —* % % - observed
i N - DBV2 (01| @ for 1/(aT,) = 4 the results for
0.6 I~ e G104 g — 0, -2, —4 do not differ
058 [ . sym tr'lef " . 7 significantly
Lo b LS ] @ \Where is the continuum limit?
0 0.1 0.2 0.3
(a T,)?
action Te/+/o
Wilson [Beinlich et al (1999)] 0.630(5)
Symanzik imp.[Beinlich et al (1999)] 0.634(8)
DBW2 [QCD-TARO (2000)] 0.627(12)
lwasaki [CP-PACS (1999)] 0.651(12)
1-loop tadpole impr. [Bliss et al (1996)] | 0.659(8) o




Glueball masses

07" glueball : large lattice artefacts for the Wilson action
40% at a ~ 0.15fm , 20% at a ~ 0.10fm.

— stringent test on the scaling behavior of alternative gauge actions
® C(Correlation matrices:

Cri(t) = (i (£)S(0)) — (S (1))(Si"(0))

R = representation of the cubic group (— A7 ™)
k, [ = different operators with several smearing levels

dn
SE(t) = LZENT N dRWi (R ), n=1,..,22,
r 1=1

x

W' (Z,t) spatial Wilson loops up to length 8
(7 operators selected, each with 4 smearing levels)
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Error reduction algorithm

[Meyer (2003,2004)]
«r  (Global updatings+ sub-updatings with spatial links
at time slices tg, t1 fixed

t< xt=T/2+1t Z 2, t even:

xt=1 Cij (t) — % Zt':to,tl <Oi(t, + t/2)>sub<0j (t, - t/2)>sub

Masses extracted through the variational method
Example: 8¢ = 5.6926, 5, =0

A
1.1 ; +++++ , B,=5.6926, B,=0 ;
=1 s E N
3 i + ]
e 1 } 7
0.9 — _
08 I R R R

0 2 4 6

t
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B Ba amo++ t/a
5.0948 0 2.237(88) 3
6.4475 -2.0 2.495(20) 2
7.8477 -4.0 2.645(25) 2
5.5420 0 1.158(18) 3
7.1603 -2.0 1.414(14) 2
8.8357 -4.0 1.550(17) 2
5.6926 0 0.967(16) 4
7.4433 -2.0 1.108(18) 3
9.2564 -4.0 1.193(18) 3
589405 0 0.787(18) 4
7.8056 -2.0 0.839(18) 3
9.7748 -4.0 0.836(17) 3

HAH

o e
HEH o
=

H
—=—

mo++/TC

L]

3 ‘ I I B ‘ I A ‘ I I B
0 0.1 0.2 0.3

(aT, )?

Continuum limit: mg++7r9 = 4.30(6)

from [Teper (1998), Vaccarino & Weingarten (1999),
Morningstar & Peardon (1999), Liu (2001)]

Tero = 0.7498(50) [S.N. (2003)] = mg++ /T. = 5.73(9)
[Morningstar, Peardon (2003)] : mg++ /T, = 5.33

Lattice artefacts:

a~0.11 fm: B, =0 :~ 18%, Bo = —2, —4 :~ 12%
a~0.17fm: B, =0 :~ 40%, B, = —2 :~ 25%, B, = —4 :~ 20%
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Conclusions

Small but not significant improvement of the scaling behavior of
T./+/o for mixed actions with negative adjoint coupling

Significant reduction of lattice artefacts for the mass of the lightest
glueball mg++ /T.

Error reduction algorithms allow good precision and control of
systematic errors and are necessary to extract reliable results from
correlation functions at large distance

Is for B, < 0 the transfer matrix positive?

Analitically: it is not trivial to prove the existence of a finite range of 3,
where the transfer matrix is strictly positive

Numerical study: for 3, = —2, —4 and all 3, considered: negative
eigenvalues were found (but with absolute value « largest
eingenvalue: not observed in the decay of two-point functions)

Further studies are needed if one is interested in applying these
actions in future dynamical QCD simulations:
dislocations, spectrum of the Wilson-Dirac matrix
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Simulation algorithm

® (Cabibbo Marinari update U — U’ (heatbath) with the action:

So = B} Z [1 — %RGTI’JCUP]
P

accepted with probability
A =min[1,exp(—S(U") + So(U") + S(U) — Sp(U))]
B% < By tuned to optimize acceptance rate

® Overrelaxation update keeping Sy constant
accepted with probability
A =min[1,exp(=S.(U") + S,(U))],

Sa(U) = a Y |1 = 3= TrsULTHsUp |

P

Complete update: 1 Cabibbo-Marinari + M overrelaxation sweeps
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Finite temperature phase transition

Critical temperature:
A = Nya({By.Bale)

Determination of 3, . for 5, = 0, -2, —4 fixed

Method: study the probability distribution of Q = & > - Pz
Pz =Trs | [, Uz 0 Polyakov loop

® In the thermodynamic limit:
At the transition point, p(|€2|) has a double peak structure
the weight of each phase is the same,
the ordered phase is threefold degenerate (Z3 symmetry)

® On afinite lattice: one assigns
config. with || < O,,;», — disordered phase
config. with |©2| > O,,;, — ordered phase
Omin: Minimum of p(|Q2|) between the two peaks

Weight of the phases: P;;s = fOOm"” d|Q| p(1Q1); Porder = [, d| p(|Q])

Condition for the estimation of 3; .: P]gzjzzéffj) -
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Spatial factorization
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