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Introduction and motivation

• Non-perturbative study of gluon and ghost propagators is of

interest for understanding the confinement phenomenon.

• In the infrared (q → 0): Singular behavior of the ghost

propagator

Gab = δab
Zgh(q

2)

q2
(Landau gauge)

is related to

– Kugo-Ojima confinement criterion, [Ojima, Kugo, (1978,1979)]

– absence of colored states in physical spectrum.

• In the infrared (q → 0): Suppression of the gluon propagator:

Dab
µν =

(
δµν −

qµqν

q2

)
Zgl(q

2)

q2
(Landau gauge)

is connected to the confinement of gluons.

Behavior of both are intimately connected !?



Results from Dyson-Schwinger-Equations

• needs gauge fixing (here Landau gauge)

• the infinite set of equations has to be truncated

Alkofer et.al [1997-2004]: scaling behavior as q → 0:

Dab
µν = δab

(
δµν −

qµqν

q2

)Zgl(q2)
q2

Zgl(q
2) ∝ (q2)2κ

Gab = δab
Zgh(q

2)

q2
Zgh(q

2) ∝ (q2)−κ

critical exponent: κ ≈ 0.595

Running coupling in MOM scheme

αs(q) ∼ [Zgh(q
2)]2 · Zgl(q2) · αs(µ)

Is there an IR fixed point αs(q)→ const. as (q → 0) ?



Gribov, Zwanziger:

Infrared behavior related to the restriction of gauge fields Aµ(x) to

the Gribov region:

Ω =
{
Aµ(x) : ∂µAµ = 0,−∂µDab

µ ≥ 0
}

Expect gauge fields belonging to the Gribov horizon to dominate

Zwanziger [2004]:

exact non-pertubative quantization of continuum theory is

provided by Faddeev-Popov formula

δΩ(∂µAµ) det(−∂µDab
µ )e−SYM [A]

The Gribov copies in this region are claimed to not affect

observables even on the lattice.

Landau gauge ∂µAµ(x) = 0 does not determine

Aµ(x) non-ambiguously. ←Gribov copies



. . . on the Lattice

To compare DSE results gauge fixing is neccessary on the lattice

• vector potential: Aµ(x) ≡ 1
2i(Uxµ − U

†
xµ)

∣∣
traceless

• Landau gauge: maxxTr
(
∂µAµ(x) · [∂µAµ(x)]†

)
< ε

• fundamental modular region: Λ ≡ {U : FU(1) ≥ FU(g)∀g}

interest on the maximum of the gauge functional

FU(g) = 1
4V

∑
x,µReTrUgxµ with U

g
xµ = gx ·Uxµ ·g†x+µ

well known: the maximum is not unique (Gribov copies)

Example: 1 gauge field configuration {Uxµ},
30 × gauge-fixed
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Are Observables affected
by a Gribov noise ?

in particular: Ghost- and Gluonpropagator



Effect of Gribov copies (other studies)

SU(2) Ghostpropagator: Gribov noise observable for 0 ≤ β < 2.6

Cucchieri [NPB 508, 353 (1997)], Bakeev et.al [PRD 69,074507 (2004)]

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
β

3

4

5

6

7

8

G
ho

st
 p

ro
pa

ga
to

r

pmin;  best

pmin;  first

Lattice 8
4

SU(3) Gluonpropagator:

Silva, Oliveira [NPB 690, 177 (2004)]

(β = 5.8,124)

1. the Gribov noise is small < 10%

2. Gribov copies change lowest momenta components

3. effect of Gribov copies can be resolved by double (or more)

statistical errors



Our study: Gluon- and Ghostpropagator
• on the same gauge-fixed configurations (164,244;β = 5.8,6.0,6.2)

Applied numerical techniques

• Parallelized (MPI) SU(3) code running on IBM 690p (HLRN)

• Update: standard Wilson action and hybrid overrelaxation

• Gauge fixing: start with random gauge copies and apply

standard overrelaxation (vs. simulated annealing)

• Ghost propagator:

G(k) =
1

3V

∑
xy

e−2πi k·(x−y)
〈(

M−1
)aa
xy

[U ]
〉

using conjugate gradient algorithm with source:

ψac(y) = δac e2πi k·y k 6= (0,0,0,0) (Cucchieri [1997])

• Gluon propagator: fast Fourier transform [FFTW package]



Remarks on gauge fixing algorithms

Goal: Find those gauge transformations which maximize (globally)

FU(g) = 1
4V

∑
ReTrUgxµ

Q
Q

Q

(Over-)relaxation:

(gx)ω where gx is

local maximum �
�

�

Simulated annealing

ground state of spin

sytem

exp
{
− FU(g)/T

}

�
�

�

Fourier acceleration

PPPP

Smeared gauge fixing

start with gx which

gauge fix the smeared

configuration Ũx,µ

. . . . . .



Gribov noise at lowest momenta
Ghostpropagator Gluonpropagator
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• Gribov noise most visible at lowest momenta

• The lower β the larger the noise



The dressing functions in the infrared
for the Ghostpropagator for the Gluonpropagator
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• Ghost: the Gribov noise increase as the momenta decrease

• Gluon: there is a small (∼ 2%) Gribov noise for all momenta



The influence on the fit parameters

very preliminary !

• expected behaviour of the dressing functions in the infrared:

Zgh(q
2) ∝ (q2)−κ Zgl(q

2) ∝ (q2)2κ q → 0

• a global fit (common κ) has

been performed to both data,

simultaneously, but the lattice

sizes considered are to small to

fit properly

cut copy κ χ2/ndf

q < 0.3 fc 0.55(3) 60

bc 0.52(2) 68

q < 0.4 fc 0.24(1) 43

bc 0.22(1) 66

q < 0.5 fc 0.25(1) 29

bc 0.24(1) 45

• exp. behaviour of the gluon propagator (to be checked yet)
[Leinweber et.al PRD 60,094507 (1999)]

Zgl(q
2) = C

 AM2α

(q2 +M2)1+α
+
L(q2,M2)

q2 +M2





Appearance of ’exceptional’ configurations

SU(3): For increasing β there are spikes in the history of the

Ghostpropagator
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here the lowest momentum (1,0,0,0) on a 244 lattice is shown



Appearance of ’exceptional’ configurations

SU(2): [Bakeev et.al [PRD 69,074507 (2004)]
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Conclusions and future plans

1. Gribov effects have to be carefully taken into account in

particular at small β or larger lattice sizes

• better algorithms for finding the global maxima are desired.

2. Infrared behavior: Larger lattices than 244 are needed to

explore the low momentum limit much better.

• to investigate the behavior of the dressing functions

Zgh(q
2) and Zgl(q

2) coming from DSE

• the (probable) finiteness of αs in the infrared can be

investigated

3. There are exceptional configurations as β increases.

• Can it spoil the ghost propagator estimate ?

• We will investigate the spectrum of the Faddeev-Popov

operator.


