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Intro SF VA+AV Running Conclusions Ph-Apps tmQCD for BK Operators pt vs. non-pt

Phenomenology of four–fermion operators

A number of phenomenological applications (without penguins and power

subtractions) involve four–fermion dimension–six operators:

Study of K 0 − K
0

and B0 − B
0

oscillations through BK ,B : O∆S=2 ,O∆B=2

Study of the ∆I = 3/2 sector of the decay K → ππ: O3/2
9 , O3/2

10

Study of the electropenguin contribution to K → ππ: O3/2
7 , O3/2

8

FCNC processes beyond the SM

(SUSY, LR-symmetric models, multi–Higgs models)
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tmQCD for BK

BK is given in QCD by

〈K̄ 0|O∆S=2|K 0〉 = 8
3 BK F2

K m2
K O∆S=2 = (s̄d)V−A(s̄d)V−A

As parity does not change, only the parity–even contributions survive

O∆S=2 → OVV+AA

Wilson reg. → OR
VV+AA(µ) = ZVV+AA(aµ,g2

0)[OVV+AA(a) +
P4

i=1 Zi(g2
0)Oi(a)]

A twist rotation of the d–quark gives [Frezzotti et al., JHEP 0108:058,2001]

O′VV+AA = cos(α)OVV+AA − i sin(α)OVA+AV
α=π/2⇒ −iOVA+AV

OVA+AV renormalizes multiplicatively!

Mass independent ren. scheme ⇒ tmQCD ≡ QCD
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A basis of ∆F = 2 d = 6 parity–odd 4–fermion operators

General structure of the operators

O±
Γ(1)Γ(2) = ψ1Γ

(1)ψ2ψ3Γ
(2)ψ4 ± ψ1Γ

(1)ψ4ψ3Γ
(2)ψ2

O±
Γ(1)Γ(2)±Γ(2)Γ(1) = O±

Γ(1)Γ(2) ±O
±
Γ(2)Γ(1)

10 Operators

Q±1 = O±VA+AV

Q±2 = O±VA−AV

Q±3 = O±PS−SP

Q±4 = O±PS+SP

Q±5 = O±
T T̃

Renormalization matrix

0BBB@
Q1
Q2
Q3
Q4
Q5

1CCCA
±

R

=

0BBB@
Z11 0 0 0 0
0 Z22 Z23 0 0
0 Z32 Z33 0 0
0 0 0 Z44 Z45
0 0 0 Z54 Z55

1CCCA
± 0BBB@

Q1
Q2
Q3
Q4
Q5

1CCCA
±

[Bernard et al., Nucl.Phys.B (Proc.Suppl.) 4 (1988) 483]

[Donini et al., Eur.Phys.J.C10:121-142,1999]
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Non perturbative renormalization in the SF scheme

Non perturbative renormalization of Q±1 = O±VA+AV
in the SF scheme has been completed

[ Guagnelli et al., Nucl.Phys.Proc.Suppl.119:436-438,2003]

Non perturbative renormalization of Q±2 , . . . ,Q
±
5

in the SF scheme is ongoing

One–loop perturbative renormalization (aim of the present work!)

checks the consistency of the scheme

provides estimates of perturbative lattice artefacts

allows a comparison: two–loop perturbative vs. non–perturbative running
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Intro SF VA+AV Running Conclusions Definition

Schrödinger Functional (basics)

A finite volume scheme. QCD is set up on a volume T × L3 (T = L), with

periodic b.c. on spatial directions and Dirichlet b.c. on time

The finite size L is used as the renormalization scale µ = 1
L , and the

continuum limit is performed by letting a → 0 at fixed L

The main advantage is the possibility to compute the non-perturbative

running in the continuum limit

Correlation functions are defined in the SF in order to probe quantum

operators. The operator is placed in the bulk at a physical distance

from the boundaries (x0 = T/2), and is probed by boundary sources

Parity is conserved by the QCD lagrangian. In order to probe

parity–odd operators, we need parity-odd boundary sources
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Intro SF VA+AV Running Conclusions Ren. Schemes P-Expansion Diagrams Matching

Renormalization of O±VA+AV in the SF scheme

First we introduce bilinear boundary sources at times x0 = 0, T

Sf1f2 [Γ] = a6 P
yz ζ̄f1 (y)Γζf2 (z) S′f1f2

[Γ] = a6 P
y′z′ ζ̄

′
f1
(y′)Γζ′f2 (z

′)

The operator is probed by three bilinear sources

F±(x0) = a3

L3

P
x〈S′[Γ3]O±VA+AV (x)S[Γ2]S[Γ1]〉

[Γ1, Γ2, Γ3] must be parity-odd Γ

Γ

1Γ

3

2

O(x)

time

The operator correlation function F± must be properly normalized

f1 = − 1
L6 〈S′[γ5]S[γ5]〉

k1 = − 1
3L6

P3
k=1〈S′[γk ]S[γk ]〉

Γ2

Γ1

time
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Renormalization of O±VA+AV in the SF scheme

First we introduce bilinear boundary sources at times x0 = 0, T

Sf1f2 [Γ] = a6 P
yz ζ̄f1 (y)Γζf2 (z) S′f1f2

[Γ] = a6 P
y′z′ ζ̄

′
f1
(y′)Γζ′f2 (z

′)

The operator is probed by three bilinear sources

F±(x0) = a3

L3

P
x〈S′[Γ3]O±VA+AV (x)S[Γ2]S[Γ1]〉

[Γ1, Γ2, Γ3] must be parity-odd Γ

Γ
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time
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Renormalization of O±VA+AV in the SF scheme (2)

Therefore we introduce a normalized c.f.

h±(x0) =
F±(x0)

f α
1 kβ

1

˛̨̨̨
α+β=3/2

and impose a renormalization condition on it:

h±(T/2)

˛̨̨̨mR=0

Renormalized
= h±(T/2)

˛̨̨̨m0=0

Tree−Level

where

h±(T/2)

˛̨̨̨mR=0

Renormalized
= ZVA+AV ,±

O h±(T/2)

˛̨̨̨mR=0

Γ

Γ

1Γ

3

2

O(x)

time

Γ2

Γ1

time

ZVA+AV ,±
O depends upon the choice of [Γ1, Γ2, Γ3] and (α, β)

.
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Renormalization schemes

We consider 9 different renormalization schemes

[Γ1, Γ2, Γ3] α β

[γ5, γ5, γ5] 3/2 0

1
3

P3
k=1[γ5, γk , γk ] 3/2 0

1
3

P3
k=1[γk , γ5, γk ] 3/2 0

1
3

P3
k=1[γk , γk , γ5] 3/2 0

1
6 εi j k [γi , γj , γk ] 3/2 0

[Γ1, Γ2, Γ3] α β

1
3

P3
k=1[γ5, γk , γk ] 1/2 1

1
3

P3
k=1[γk , γ5, γk ] 1/2 1

1
3

P3
k=1[γk , γk , γ5] 1/2 1

1
6 εi j k [γi , γj , γk ] 0 3/2
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Perturbative expansion

Correlation functions are expanded to one loop order...

F±(x0) = F(0)±(x0) + ḡ2
»

F(1)±(x0) + m(1)
c

∂F(0)±
∂m0

(x0)

–
+ O(g4)

f1 = f (0)
1 + ḡ2

»
f (1)
1 + m(1)

c
∂f (0)

1
∂m0

–
+ O(ḡ4)

k1 = k(0)
1 + ḡ2

»
k(1)

1 + m(1)
c

∂k(0)
1

∂m0

–
+ O(ḡ4)

...as well as the renormalization constant

ZVA+AV,±
O = 1 + ḡ2Z (1) + O(ḡ4)

Z (1) = −


h(1)

h(0)
+

m(1)
c

h(0)
∂h(0)

∂m0

ff
+ α


f (11)

f (0)
1

+
m(1)

c

f (0)
1

∂f (0)
1

∂m0

ff
+ β


k(
11)

k(0)
1

+
m(1)

c

k(0)
1

∂k(0)
1

∂m0

ff

Z (1) = B±SF + γ(0)± log(a/L) + O(a/L)
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»
f (1)
1 + m(1)

c
∂f (0)

1
∂m0

–
+ O(ḡ4)
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One loop Feynman Diagrams for F±(x0)
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NLO-AD in the SF scheme from matching with DRED

Once the NLO-AD is known in a reference scheme, it can be computed in

any other scheme by a matching procedure

Matching Formula: DRED → SF

γ
(1)±
SF = γ

(1)±
DRED + 2b0

»
B±SF −

Z±

16π2

–
+ γ(0) c1,0 + c1,1Nf

4π

[Martinelli,Phys.Lett.B141:395,1984], [Frezzotti et al.,Nucl.Phys.B373:781-794,1992]

Results for the 9 SF schemes

[Γ1, Γ2, Γ3] α β γ
(1)+
SF /γ

(0)+
SF γ

(1)−
SF /γ

(1)−
SF

[γ5, γ5, γ5] 3/2 0 0.0204(1) + 0.008023(7)Nf −0.46703(6) + 0.038908(3)Nf
[γ5, γk , γk ] 3/2 0 −0.3145(2) + 0.02832(1)Nf −0.10915(8) + 0.017218(5)Nf
[γk , γ5, γk ] 3/2 0 0.0667(1) + 0.005216(7)Nf −0.49019(6) + 0.040312(3)Nf
[γk , γk , γ5] 3/2 0 −0.2878(2) + 0.02670(1)Nf −0.15903(8) + 0.020242(5)Nf

εi j k [γi , γj , γk ] 3/2 0 −0.2397(2) + 0.02379(1)Nf −0.18397(9) + 0.021753(5)Nf
[γ5, γk , γk ] 1/2 1 −0.3608(3) + 0.03113(2)Nf −0.08596(8) + 0.015813(5)Nf
[γk , γ5, γk ] 1/2 1 0.0205(2) + 0.00802(1)Nf −0.46703(6) + 0.038908(3)Nf
[γk , γk , γ5] 1/2 1 −0.3341(3) + 0.02951(2)Nf −0.13585(8) + 0.018837(5)Nf

εi j k [γi , γj , γk ] 0 3/2 −0.3091(3) + 0.02799(2)Nf −0.14921(9) + 0.019647(5)Nf
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Perturbative Running

The step scaling function measures the running of the operator with the
renormalization scale µ = 1/L

σ±[ḡ2(L)] =
ZVA+AV,±
O (2L)

ZVA+AV,±
O (L)

It can be expanded in perturbation theory

σ±(u) = 1 + σ±1 u + σ±2 u2 + O(u3)
˛̨
u=ḡ2(L)

σ±1 = γ(0)± ln 2

σ±2 = γ(1)± ln 2 +
˘ 1

2

`
γ(0)±´2

+ b0γ
(0)±¯`

ln 2
´2
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O+
VA+AV : perturbative vs. non-perturbative running
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Conclusions

We studied perturbative renormalization of the ∆F = 2 parity-odd
4-fermion operator O±VA+AV to one-loop order in the SF scheme

NLO-AD has been computed from matching with the DRED scheme

Agreement/Disagreement between NLO and NP results is strongly
scheme dependent

Renormalization of the other operators Q±2 , . . . ,Q
±
5 is work in progress [

Pena, Palombi, Sint, Vladikas, work in progress]
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[ LPHAA
Collaboration Pena, Palombi, Sint, Vladikas, work in progress]
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