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Background

Major developments in lattice gauge theory during
the last decade:

Conceptual–theoretical development:
The long-standing problem of how to formulate chiral
symm. on lattice has been solved. Explicit solution:
Overlap fermions – have exact chiral symm.
encapsulated in GW relation γ5D + Dγ5 = aDγ5D
→ free of the problems caused by lack of chiral symm.
in previous formulations.
However, implementing Overlap fermions in computer
simulations is v. difficult challenge. Further advances
in algorithms & computer power needed...

Practical–theoretical development:
Algorithm advances for improved staggered fermions
have made possible dynamical fermion simulations
on realistically large lattices. Impressive increase in
agreement with experimental values for hadron masses
compared to previous quenched simul’s.
However, problematic conceptual/theoretical issues...
→ Should the results be regarded as coming from first-
principles calculation in QCD, or instead from some
kind of effective theory?



Theoretical issues for staggered fermions

1) Staggered formulation is lattice theory for 4
continuum fermion flavours.
→ need to take fractional power of fermion determinant
to describe 2 or 3 flavours of dynamical (sea) quarks.
Does this mean we are dealing with a lattice theory
with non-local action?

2) Is perturbative lattice QCD with staggered fermions
renormalisable? And if so, does it reproduce 4 flavour
continuum QCD?

– This is well-established for perturbative lattice
QCD with Wilson fermions [Reisz,’86-’88]. But the
staggered fermion case remains unresolved – has extra
complications:

∼ The lattice quark flavour fields live on the
blocked lattice (spacing = 2a), while the gauge link
variables live on the original lattice (spacing = a).
∼ The lattice action contains flavour-changing
interactions. Although these terms vanish in the
naive continuum limit, it is far from clear that the
Feynman diagrams involving them will all vanish in
the continuum limit of a renormalised theory.



Testing universality with partially naive fermions

Euclidean spacetime lattice, finite volume.
a=time lattice spacing, a′=spacial lattice spacing

Sfermion = a(a′)3
∑
(x,τ)

ψ̄(x, τ)D(r)ψ(x, τ)

D(r) = 1
a γ4∇4 + r

2a ∆4 + Dspace + m

Dspace = 1
a′ ∇space + r′

2a′ ∆space

∇µψ(x) = 1
2[ Uµ(x)ψ(x+bµ̂)−Uµ(x−bµ̂)ψ(x−bµ̂)]

∆µψ(x) = 2ψ(x)−Uµ(x)ψ(x+bµ̂)−Uµ(x−bµ̂)ψ(x−bµ̂)

b ∈ {a, a′}.

r = r′ �= 0 ⇒ Wilson fermions
r = r′ = 0 ⇒ naive lattice fermions
r=0, r′ �=0 ⇒ partially naive–partially Wilson fermions

r = 0 → “fermion doubling” on Euclidean time axis.

→ Can test universality by comparing the r =0 lattice
theory with the theory for 2 flavours of Wilson (r �= 0)
fermions: According to universality these should coincide
in the continuous time (a → 0) limit.



Partially staggered interpretation in r=0 case

Lattice Dirac operator

D(r) = 1
a γ4∇4 + r

2a ∆4 + Dspace + m

In r=0 case introduce staggered ’flavour’ fields:

ψ1(x, τ) := ψ(x, 2τ) , ψ2(x, τ) := ψ(x, 2τ +a)

living on partially blocked lattice. (time spacing= 2a)
In free field case D(r=0) then takes form

D(r=0)
(

ψ1
ψ2

)
=

[
1
a γ4

(
0

∂+
4

∂−
4
0

)
+ Dspace + m

](
ψ1
ψ2

)

Now make basis transform in spinor⊗flavour space:

D(r=0) → O−1D(r=0)O O =
(

1
−1

1
1

)(
γ5γ4

0
0
1

)

= γ4⊗
(

1
0

0
1

)
1
2a ∂4 + γ5⊗

(
0
1

−1
0

)
1

2(2a) ∆4 + Dspace + m

where ∂4 = 1
2(∂

+
4 + ∂−

4 ). This is ’partially staggered’
lattice Dirac operator. → Any problems with usual
staggered fermions are likely to also show up in this
setting.



Testing universality by comparing lattice fermion det’s

Universality implies

lim
a→0

detD(r=0) =
(

lim
a→0

detD(r �=0)
)2

mod p.i.f.’s

– Will check this by explicit analytic calculation.

Although the fermion det is not a physical observable,
there are several reasons why this test is of interest:

1) It tests the “fractional power” prescription for the
fermion det in lattice QCD with staggered fermions.

2) The fermion det contains the one (fermion) loop
gluonic n-point functions:

→ Problems for renormalisation of LQCD with
(partially) staggered fermions could manifest
themselves here.



Universality expectation:

lim
a→0

detD(0) =
(

lim
a→0

detD(r �=0)
)2

mod p.i.f.’s

Result of direct calculation (mod p.i.f.’s):

lim
a→0

detD(0) =
(

lim
a→0

detD(±1)
)2

e∓
R β
0 Tr ( r′

2a′∆space(τ)) dτ

→ reveals “universality anomaly”. Phys. significance?

∆space(τ) defined on QM Hilbert space {ψ(x)}.
(replace ψ(x, τ) by ψ(x) in def. of ∆spaceψ(x, τ))
– involves spacial link variables Uσ(x, τ) (σ=1, 2, 3).

r′
2a′∆space formally vanishes in spacial continuum limit
a′ → 0, but in actual fact Tr 1

a′∆space diverges in this
limit since the largest eigenvalue of 1

a′∆space is ∼ 1
a′.

Will come back later to the physical significance, or
lack thereof, of this anomaly factor.



The results in more detail

β := length of time axis; held fixed when taking
the continuous time limit a → 0. (β=aNβ).
N := dim. of QM Hilbert space.
U4(x, τ) = lattice transcript of A4(x, τ).

By direct calculation we find:

detD(r=±1) a→0−→ (
1
a

)NNβ e±
R β
0 TrM(τ) dτ det(1− V(β))

detD(r=0) a→0−→ (
1
2a

)NNβ det(1− V(β))2

M(τ) = r′
2a′∆space(τ)+m, and V(τ) for each τ ∈ R

is an operator on QM Hilbert space {ψ(x)} given as
follows:
Regard ψ(x, τ) as function Ψ(τ) taking values in
QM Hilbert space. Introduce continuous time—lattice
space Dirac operator:

D = γ4( ∂
∂τ + A4(τ)) + Dspace(τ) + m τ ∈ [0, β]

Extend to all τ ∈R by periodicity under τ → τ +β.
Then:

DΨ(τ) = 0 (τ ∈R, no periodicity requirement on Ψ(τ))

⇔ Ψ(τ) = V(τ)Ψ(0) ← definition of V(τ)



Outline of the derivation: step 1

Ψ(τ) (↔ ψ(x, τ)) and D(r) represented as

Ψ̂ = (Ψ̂(0), . . . , Ψ̂(Nβ−1)) , Ψ̂(k) = Ψ(ak)

D̂(r)Ψ̂(k) = d
(r)
−1(k)Ψ̂(k−1) + d

(r)
0 (k)Ψ̂(k) + d

(r)
1 (k)Ψ̂(k+1)

Write D̂(r) as Nβ × Nβ matrix and evaluate
determinant by method of P. Gibbs [Phys. Lett. B172

(1986) 53].

Note: d
(r)
±1(k) ∼ (γ4∓ r) invertible for r �= ±1 but not

for r = ±1.
→ The cases r = ±1 and r �= ±1 require separate
treatments. Result is (with Nβ even in r �=±1 case):

detD(r �=±1) = ((1−r2)2

2a )NNβ det
““

1
0

0
1

”
− Û (r)(Nβ/2)

”

detD(r=±1) = (1
a)

NNβ χ±(M) det(1 − V̂(Nβ))

where χ±(M) :=
QNβ−1

k=0 det(1 ± aM̂(k))1/2.

Û (r) is evolution op. for D̂(r �=±1)Ψ̂(k) = 0 (k∈Z) :

“
Ψ̂(2n)

Ψ̂(2n+1)

”
= Û (r)(n)

“
Ψ̂(0)

Ψ̂(1)

”
(two initial values needed)

V̂(k) evolution op. for D̂(±1)Ψ̂(k) = 0 (k∈Z) :

Ψ̂(k) = V̂(k)Ψ̂(0) (one initial value needed)



Outline of the derivation: step 2

Show that the lattice time evol. op’s Û (r)(Nβ/2) and

V̂(Nβ) converge to appropriate continuous time evol.

op’s. Can do this if D̂(r) can be written in the form

D̂(r) = L̂1(k) 1
a ∂ + L̂0(k) (∗)

with ∂ = forward or backward finite diff. op., and
L̂j(k) (k∈Z, j =1, 2), which act on the QM Hilbert
space, are such that

L̂j(k) = Lj(ak) + O(a)

for some Lj(τ) (τ ∈ R). Then the solutions to

D̂(r)Ψ̂(k)=0 approximate the solutions to DΨ(τ)=0
where

D = L1(τ) d
dτ + L0(τ)

Consequently the lattice time evol. op. converges to
the corresponding continuous time evol. op. for a→0.

This type of convergence result known in math lit.: Burghelea

et.al. [CMP 138 (1991) 1]; Forman [CMP 147 (1992) 485].

Have only been able to write D̂(r) in form (∗) in the
r = 0 and r = ±1 cases.



Outline of the derivation: step 2 (cont’d)

r = 1 case (r = −1 similar). Ψ̂ =
“

Ψ̂+

Ψ̂−

”
, γ4Ψ̂± = ±Ψ̂±

D̂(r=1) = L̂1
1
a

“
∂−
0

0
∂+

”
+ L̂0

L̂1(k) = γ4

“
Û4(k−1)−1

0
0

Û4(k)

”
( Û4(k)ψ(x) := U4(x,ak)ψ(x))

L̂0(k) = γ4

“
1
a(1−Û4(k−1)−1)

0
0

1
a(Û4(k)−1)

”
+ D̂space(k) + m

→ L̂j(k) = Lj(ak) + O(a) ,

D = L1(τ) d
dτ +L0(τ) = γ4(

d
dτ +A4(τ))+Dspace(τ)+m

⇒ lima→0 V̂(Nβ) = V(β)

r = 0 case:

D̂(r=0) = L̂1
1
2a

“
∂+

0
0

∂−
”

+ L̂0 on
“

Ψ̂1(n)

Ψ̂2(n)

”
=

“
Ψ̂(2n)

Ψ̂(2n+1)

”

L̂1(n) = γ4

“
0

γ4Û4(2n+1)
γ4Û4(2n−1)−1

0

”

L̂0(n) =
“

D̂space(2n)+m

γ4
1
2a (Û4(2n)−Û4(2n−1)−1)

γ4
1
2a (Û4(2n+1)−Û4(2n)−1)

D̂space(2n)+m

”

→ L̂j(k) = Lj(2ak) + O(a) ,

D̃ =
(

Dspace(τ)+m

γ4(
d
dτ +A4(τ))

γ4(
d
dτ +A4(τ))

Dspace(τ)+m

)
= O−1

(
D
0

0
D

)
O

⇒ lima→0 Û (r=0)(Nβ/2) = O
“

V(β)
0

0
V(β)

”
O−1



Free field case

V(β) = e−βH , H = γ4(∇space+M) QM Hamiltonian

energy eigenvalues ±Ep =
√

p2 + Mp (2-fold degen.)

det(1 − V(β)) =
∏
p

[
(1 + eβEp)(1 + e−βEp)

]2

=
∏
p

[
eβEp (1 + e−βEp)2

]2

= det(D)Matsubara

This is precisely the expression for free field det. which
arises from Matsubara frequency summation method
(after discarding the undetermined overall constant which appears

in that approach).

Hence, in free field case,

detD(r=±1) a→0−→ (
1
a

)NNβ e±
R β
0 TrM(τ) dτ det(D)Matsub.

detD(r=0) a→0−→ (
1
2a

)NNβ det(D)2Matsub.

This can also be derived starting from detD(r) =
product of eigenvalues.
→ provides crosscheck on correctness of the results.



Clarification of the “universality anomaly”

lim
a→0

detD(0) =
(

lim
a→0

detD(±1)
)2

e∓
R β
0 Tr ( r′

2a′∆space(τ)) dτ

“Anomaly” factor appears to depend on the gauge
field. If this is really the case then serious problem
for universality (seen, e.g., at perturbative level by
expanding the relation in powers of the gauge field).

However, although ∆space depends on gauge field, it
turns out that Tr ∆space(τ) is independent of the gauge
field! The anomaly factor is therefore physically
inconsequential.

Proof:

∆space(τ) =
P

σ=1,2,3 ∆σ(τ)

∆σ(τ)ψ(x) = 2ψ(x) − Uσ(x, τ)ψ(x + a′σ̂)

−Uσ(x − a′σ̂)−1ψ(x − a′σ̂)

Tr ∆σ(τ) =
P

p 〈ψp ,∆σψp〉 ψp(x) ∼ eipx

=
P

p

P
x

[
2 − Uσ(x, τ) eipσa′

−Uσ(x − a′σ̂)−1 e−ipσa′ ]

The terms involving Uσ vanish since
∑

pσ
eipσa′

=
δ(a′) = 0 !



Something else to worry about:

In the derivation of the a → 0 limit of detD(r=0) it
was assumed that Nβ is even. Recall:

detD(r=0) =
(

1
2a

)NNβ det
[(1

0
0
1

) − Û (r)(Nβ/2)
]

detD(r=0) a→0−→ (
1
2a

)NNβ det(1 − V(β))2 (Nβ even)

One would expect that the continuous time limit with
odd Nβ is the same.
However, this turns out not to be the case!
For odd Nβ one finds

detD(r=0) =
(

1
2a

)NNβ det
[(1

0
0
1

) − (0
1

1
0

) Û (r)(Nβ/2)
]

and subsequently

detD(r=0) a→0−→ (
1
2a

)NNβ det(1 − V(β)) det(1 + V(β))

→ Continuous time limit of partially staggered fermion
determinant detD(r=0) is ambiguous: different answers
are obtained depending on whether Nβ is restricted to
be even or odd!



Conclusions

A partially staggered lattice formulation for 2 fermion
flavours was considered. Universality of LQCD can be
tested by comparing this with the lattice theory for
2 flavours of Wilson fermions in the continuous time
limit.

Universality relation for fermion determinants,

lim
a→0

detD(0) =
(

lim
a→0

detD(±1)
)2

,

was found to hold mod p.i.f.’s.

Implications:
– Lends support for the “fractional power” prescription
for fermion det in LQCD with staggered fermions.
– Gives a first indication that a perturbatively
renormalisable theory for (at least partially) staggered
fermions exists and is in the right universality class.

The relevance goes beyond the specific issues for
staggered fermions – tests general hypothesis that
lattice theories whose actions and propagators have
same naive continuum limit are in the same universality
class.



Current projects following on from this work:

– Perturbative renormalisation of lattice QCD with
partially staggered fermions (i.e. Dirac operator
D(r=0)). Aim to show that this is in same universality
class as renormalised theory with 2 flavours of Wilson
fermions. (This would be a first step toward
renormalisation of usual staggered fermion theory.)

Renormalisation of a variant of partially staggered fermions in the

context of chiral sigma model (an effective field theory; no gauge

fields involved) has been done previously by Pernici et.al. [NPB

458 (1996) 355, hep-th/9507055].

–The specific formulae derived for lima→0 detD(r) ,
involving the evolution operator V(β), can be used to
show equivalence between Hamiltonian and functional
integral formulations of lattice QCD. (Fills gaps in
previous treatments.)


